
论文合集-LLM+推荐系统
文章平均质量分 93
你是否对大型语言模型如何颠覆传统推荐系统充满好奇?你是否想第一时间了解顶会论文中的最新研究成果?那么,这个专栏就是为你准备的!“论文合集-LLM+推荐系统”将带你一起,深度挖掘LLM赋能推荐系统的无限可能,从理论到实践,我们一起探索AI推荐的新纪元!
三月七꧁ ꧂
尚未佩妥剑,转眼便江湖。愿历尽千帆,归来仍少年! 跨考计算机上岸,下一站:月薪3W!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Fine-Tuning a Large Language Model with Reinforcement Learning for Educational Question Generation
本文提出了一种基于强化学习的大型语言模型微调方法(RLLM-EduQG),用于教育问题生成任务。针对传统交叉熵训练存在的暴露偏差和指标不一致问题,该方法采用混合目标函数结合交叉熵和强化学习损失,优化Google FLAN-T5模型。实验表明,该方法在SciQ数据集上能生成语法和语义准确的教育问题,性能优于现有方法。创新点在于引入强化学习框架,同时考虑BLEU等离散指标和语义相似度,提升了生成问题的质量。原创 2025-06-30 13:25:38 · 845 阅读 · 0 评论 -
Leveraging Deep Reinforcement Learning for Metacognitive Interventions across Intelligent Tutoring
本研究比较了两种元认知干预方法——基于随机森林分类器的静态干预与基于深度强化学习(DRL)的适应性干预——在智能辅导系统(ITSs)中的应用效果。研究发现,DRL提供的适应性干预显著缩小了学生间的元认知技能差距,使学生在后续只支持反向链接(BC)策略的概率导师任务中表现更佳,成绩显著超越对照组。相比之下,静态干预仅对部分学生有效。研究证明了DRL在提供适应性元认知支持和促进学生未来学习准备方面的有效性。原创 2025-06-30 13:17:10 · 688 阅读 · 0 评论 -
Ruffle&Riley: Insights from Designing and Evaluating a Large Language Model-Based Conversational T
本文介绍并评估了基于大型语言模型(LLM)的对话辅导系统Ruffle&Riley,该系统通过自动生成辅导脚本和双代理(学生Ruffle和教授Riley)对话实现智能化教学。研究通过两项在线用户实验(N=200)比较了该系统与简单QA聊天机器人和阅读活动的效果。结果显示,Ruffle&Riley用户参与度和理解度较高,但短期学习效果与阅读活动无显著差异。该系统为未来智能教学系统的设计提供了新思路,并开源了代码以支持相关研究。原创 2025-06-28 09:21:43 · 800 阅读 · 0 评论 -
Pedagogical Agent Support and Its Relationship to Learners’ Self-regulated Learning Strategy Use wit
本研究探讨了智能教学系统(ITS)中教学代理对学习者自我调节学习(SRL)策略的支持效果。通过MetaTutor系统对105名本科生进行实验,比较了提示反馈组(P&F)与对照组的学习效果差异。结果显示,P&F组学生获得了更大的学习收获,并使用了更多认知和元认知SRL策略。分析表明,教学代理的外部支持能有效促进学习者采用新颖的SRL策略,减少策略重复使用。该研究验证了Kramarski和Heaysman的教师三重SRL-SRT模型在教学代理中的应用,证实虚拟教学代理可以像教师一样有效支持学生的原创 2025-06-28 09:05:26 · 944 阅读 · 0 评论 -
E4SRec: An Elegant Effective Efficient Extensible Solution of Large Language Models for Sequential
E4SRec提出了一种新颖高效的顺序推荐解决方案,将大型语言模型(LLM)与传统推荐系统相结合。该方法通过ID注入策略将项目ID信息整合到LLM中,解决了现有基于LLM的推荐方法无法处理ID信息的局限性。E4SRec采用预训练顺序推荐模型提取项目嵌入,通过指令调优使LLM适应推荐任务格式,并仅训练少量可插拔参数实现高效适配。实验表明,E4SRec能够生成可控范围内的推荐结果,并在效率和可扩展性上优于现有方法。该方案为构建工业级推荐系统提供了实用框架。原创 2025-06-27 12:17:30 · 1075 阅读 · 0 评论 -
Prompt Distillation for Efficient LLM-based Recommendation
本文提出了一种基于大语言模型(LLM)的高效推荐方法——Prompt Distillation (POD),旨在解决传统离散提示在推荐系统中存在的两个问题:用户/项目ID与文本提示间的语义鸿沟,以及长文本处理导致的高延迟。该方法通过将离散提示提炼为连续的提示向量,有效桥接ID与文本的语义差异,减少推理时间。同时,作者提出任务交替训练策略,通过按任务分组训练样本,显著提升多任务训练效率。实验证明,POD在顺序推荐和Top-N推荐任务上优于现有方法。值得注意的是,该方法虽然显著提升了训练效率,但推理效率提升有限原创 2025-06-27 12:05:42 · 625 阅读 · 0 评论 -
LLaRA: Large Language-Recommendation Assistant
LLaRA:融合语言模型与传统推荐系统的新型框架 本文提出大型语言推荐助手(LLaRA),一种结合大型语言模型(LLM)与传统顺序推荐系统优势的创新框架。传统方法通常仅使用项目ID或文本元数据进行推荐,存在知识覆盖不全或行为模式理解不足的局限。LLaRA通过混合提示方法,将传统推荐模型学习的行为嵌入与文本特征相结合,并采用课程学习策略:先使用纯文本提示预热模型,再逐步引入混合提示以整合行为知识。实验证明LLaRA在多个数据集上优于现有基准模型,特别是在命中率@1指标上表现突出。该研究为增强LLM在推荐系统的原创 2025-06-26 23:36:33 · 753 阅读 · 0 评论 -
Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Parad
摘要 本文提出了一种创新的统一推荐范式P5(预训练、个性化提示和预测范式),将各类推荐任务统一为文本到文本的生成框架。P5通过自然语言序列表示用户-项目交互、元数据等信息,利用语言建模目标进行多任务预训练,实现了不同推荐任务间的知识共享。该方法支持基于提示的零样本预测,减少了微调需求,并展现出对新颖提示和未知项目的泛化能力。实验验证了P5在五个推荐任务上的有效性,包括顺序推荐和评论生成等。P5标志着推荐系统向通用推荐引擎的演进,其代码和模型已开源。原创 2025-06-26 23:12:29 · 833 阅读 · 0 评论