PyTorch学习笔记(7)--神经网络:池化层

本文介绍了PyTorch中神经网络池化层的基本概念和使用,包括池化操作的作用、类型及步骤。重点讲解了最大池化层,通过实例展示了如何在代码中实现最大池化,并分析了输入和输出尺寸信息。最后,讨论了池化层在图像处理中的效果,以及其在防止过拟合和提升模型尺度不变性方面的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PyTorch学习笔记(7)–神经网络:池化层

    本博文是PyTorch的学习笔记,第7次内容记录,主要介绍神经网络池化层的基本使用。

1.池化操作

1.1什么是池化操作

    池化操作(Pooling)是CNN中非常常见的一种操作,Pooling层是模仿人的视觉系统对数据进行降维,池化操作通常也叫做子采样(Subsampling)或降采样(Downsampling),在构建卷积神经网络时,往往会用在卷积层之后,通过池化来降低卷积层输出的特征维度,有效减少网络参数的同时还可以防止过拟合现象。
    可以简单的理解池化操作的作用:将一个尺寸较大的图像通过池化操作转换成尺寸较小的图像,但是这个操作过程中尽量保留原始图像的特征。关于池化的介绍可以参照这个博文:池化操作
    通过池化操作可以达到如下的效果:

 1. 抑制噪声,降低信息冗余 
 2. 提升模型的尺度不变性、旋转不变形 
 3. 降低模型计算量 
 4. 防止过拟合

1.2池化操作的类型

    池化操作类型较多,在PyTorch官网中有关于池化操作类型的介绍,参照pyTorch官网,常用的池化操作包括:最大池化、平均池化、随机池化、中值池化等。最常用的是最大池化和平均池化,本文以最大池化介绍神经网络的池化层。

1.3池化操作的步骤

    以最大池化操作为例,下图展示了池化操作的基本过程:
在这里插入图片描述
    在池化操作中也和卷积操作类似,有kernel_size这个参数,在卷积层中叫卷积核,在池化层中叫池化核,上图中池化核大小设置为2,也就是kernel_size=2,同时将步长stride=2。最大池化就是取池化核所覆盖区域中最大的值作为输出值,以上图中左上角黄色区域的为例,3、6、4、7四个数字中最大的为7,因此执行最大池化操作之后,得到的输出结果为7。

2.池化层

2.1池化层相关参数

    在PyTorch官网中,详细介绍了池化操作的函数:torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False),在该函数中可以看出执行池化操作有kernel_size、 stride=None、 padding=0、 dilation=1、 return_indices=False、 ceil_mode=False共6个参数需要设置。对这6个参数的说明如下:
- kernel_size:池化核的大小,类型为int 或者元组,当池化是方形的时候,只需要一个整数边长即可,池化不是方形,要输入一个元组表示 【必选】(例如:设置kernel_size=3时,会自动生成一个3×3的池化核)。
- stride:步长的大小,与卷积层不同,池化层步长大小默认为kernel_size的大小。 【可选】
- padding:在输入图像外围增加一圈0。【可选】
- dilation:控制窗口中元素步幅的参数,较少使用。【可选】
- return_indices:如果为True,将返回最大索引以及输出。适用于torch.nn.maxUnpol2D以后版本,较少使用。【可选】
- ceil_mode:如果为True,将使用ceil而不是floor来计算输出形状,较少使用,关于ceil和floor可以参考下述博文:ceilfloorround三个取整函数【可选】

2.2最大池化应用实例1–处理矩阵

    现以池化矩阵的操作为例,介绍池化操作的具体代码实现。现在有图所示的矩阵,同时设置kernel_size=3,验证计算结果是否正确。
在这里插入图片描述

  1. 当ceil_mode=True时,使用ceil输出结果。具体代码和输出结果如下:
# coding :UTF-8
# 文件功能: 代码实现神经网络--池化层功能
# 开发人员: dpp
# 开发时间: 2021/8/17 4:53 下午
# 文件名称: nn_maxpool.py
# 开发工具: PyCharm
import torch
from torch import nn
from torch.nn import MaxPool2d

input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值