【mmsegmentaion训练自己数据集】

1. 准备VOC数据集

就按照deeplabv3的转换
在这里插入图片描述

2. 如何训练

2.1 选择模型【配置文件,用什么模型】

  1. 以deeplabv3为例, 配置文件名包含所用的数据集类型,选择VOC,不要带aug增强数据集的,带aug的后面还需要转换数据集。
  2. 可以看到voc格式的文件名,都带aug,那么,先选择一个VOC的配置文件,复制一份,重命名,删除文件名中的aug

在这里插入图片描述

  1. 打开刚才复制的配置文件,可以看到里面导入的dataset也是带aug的,找到这个文件的位置
    在这里插入图片描述
    可以看到上面这个voc数据集文件是不带增强
    在这里插入图片描述
    所以,复制pascal_voc12.py使用,重命名成想使用的名字
### 使用 MMSegmentation 运行 SegFormer 模型 为了成功使用 MMSegmentation 框架来运行 SegFormer 模型,需遵循一系列配置和操作流程。 安装依赖库是首要任务。确保环境中已正确安装 PyTorch 和 MMCV 库[^1]。可以通过官方文档获取详细的环境设置指南。接着,克隆 MMSegmentation 仓库并按照说明完成本地部署: ```bash git clone https://github.com/open-mmlab/mmsegmentation.git cd mmsegmentation pip install -e . ``` 准备数据集同样重要。对于自定义数据集,应该创建对应的文件夹结构,并编写相应的配置文件以适应特定的任务需求。这通常涉及到修改 `data` 文件夹下的子目录名称以及调整路径参数。 配置模型方面,SegFormer 的默认配置已经包含在 MMSegmentation 中。可以找到位于 `configs/segformer` 下的相关配置文件作为起点。如果要微调预训练权重,则需要下载对应版本的 checkpoint 并指定其位置给新的实验配置文件中的 `load_from` 字段。 启动训练过程前,建议先验证单步推理是否正常工作,即通过命令行工具执行测试脚本确认一切按预期运作。之后便能正式开始训练阶段了。下面是一个简单的例子展示如何基于现有配置启动训练: ```bash python tools/train.py configs/segformer/segformer_b0_512x512_160k_ade20k.py --gpu-id=0 ``` 上述命令会依据所提供的配置文件,在 ADE20K 数据集上对 SegFormer-B0 版本进行为期 160,000 步迭代的学习;同时指定了 GPU ID 来控制计算资源分配。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值