引言
机器人系统主要通过单个或多个机器人与人类的密切合作来完成期望的任务,现在已经成为农业、工业和服务部门发展中不可或缺的一部分。在这种发展趋势下,机器人路径规划已成为机器人系统中最关键的问题之一。多机器人路径规划是一个np困难问题,它描述了在相同的工作环境中,这些机器人需要以最小的成本从它们的初始位置移动到各自的目的地,同时避免碰撞的场景。目前研究人员主要利用元启发式优化算法来解决此类问题
本期介绍一种基于自适应差分进化的多机器人路径优化算法Self-adaptive differential evolution-based coati optimization algorithm for multi-robot path planning。将差分进化DE算法的更新策略与 长鼻浣熊优化算法Coati optimization algorithm COA相结合,提出了一种SDECOA算法,增强了COA算法的全局搜索和局部搜索能力,用以解决多机器人路径规划问题。
本节介绍机器人路径规划问题的仿真场景布局。在该问题的仿真模型中,所有机器人都是半径相等的圆形,不允许机器人之间发生碰撞。每个机器人都有自己的起点和终点。对于静态障碍物,每一个都有不同的大小和形状。同样,每个动态障碍也是圆的,半径相等,有自己的起点和终点。每一个动态障碍物在运动过程中都以匀速运动而不偏离。在本研究中,我们创建了三种不同的场景,机器人数量、静态障碍物数量、动态障碍物数量。这三种场景的布局如图所示。在这些场景中,黑色路径代表机器人的规划路径,蓝色路径代表动态障碍物的路径,“x”表示物体各自的终点。在求解多机器人路径规划问题时,算法性能越强,机器人路径越平滑,平均行走距离越短。
在这个模拟中,机器人的下一个位置可以用方程进行数学计算
式中,c表示当前位置,v是速度,θ表示方位。
主要适应度函数一般可以表示为式中的参数形式。
适应度函数评估以下四个标准:•F1最短距离•F2避开静态障碍物•F3避开动态障碍物•F4避开其他机器人
F1最短距离
F2避开静态障碍物
F3避开动态障碍物
F4避开其他机器人
主要适应度函数是这些适应度函数的和
此外,动态障碍物在每一步都使用方程进行数学移动
03. 对比验证
通过这些实验数据可以看出,无论机器人数量多少,所提出的算法总是达到最佳性能。而且,随着机器人数量的增加,其他算法的值变得非常大,而SDECOA仍然可以合理地管理。三种场景下的路径图清楚地表明,该算法使机器人的行走距离更短,路径更平滑,尤其在机器人在更复杂的环境中运行时,具有显著的优势。因此,可以证明SDECOA算法是优越的。
参考文献
Zhu, Lun, et al. "Self-adaptive differential evolution-based coati optimization algorithm for multi-robot path planning." Robotica (2025): 1-38.
Matlab代码下载
微信搜索并关注-优化算法侠(英文名:Swarm-Opti),或扫描下方二维码关注,以算法名字搜索历史文章即可下载。
完整代码
速速码住 | Multi-robot path planning多机器人路径规划-附Matlab免费代码
速速码住 | Multi-robot path planning多机器人路径规划-附Matlab免费代码
速速码住 | Multi-robot path planning多机器人路径规划-附Matlab免费代码
点击链接跳转:
390种优化算法免费下载-matlab
https://mp.weixin.qq.com/s/EzKqtSwR9r2DkGj-ozJXwA
求解cec测试函数-matlab
cec2022测试函使用教程及matlab代码免费下载
绘制cec2017/018/2019/2020/2021/2022函数的三维图像教程,SO EASY!