引言
本期介绍一种基于动物群体的创新算法——豺优化算法Dhole optimization algorithm,DOA。灵感来自于豺的社会和狩猎活动,特别是它们的声音交流和协调技术。于2025年7月最新发表在JCR 1区,中科院3区 SCI 期刊 Cluster Computing。
本节说明该方法中使用的逻辑和数学模型。
1. 初始化:和其他群优化算法一样,采用随机初始化。
2. 成员的数量和猎物的大小:豺群通过他们有组织有结构的狩猎技术展示了非凡的协调能力。豺群通常组成5到20个成员的小组。这种合作包括使用隐蔽的战术、战略性的位置和精确的定时发声来迷惑和恐吓目标。群体成员的数量定义:
众所周知,它们既可以捕食比自己大的动物,也可以捕食比自己小的动物。豺通过配合猎物的自然行为来提高它们的捕猎成功率。
ps表示最合适的狩猎时间,µ表示最合适的群体成员数量,EF表示影响狩猎成功的环境或外部因素,其值介于0 ~ 1之间,K是实数,影响狩猎效率,C1用于控制不同情况下猎物的大小。
3. 搜索阶段:在搜索阶段开始之前,豺群按如下方式定义目标
在找到猎物后,豺群使用公式(3)来考虑他们的群体大小。如果种群数量少于10只,并且豺的叫声(随机值)小于0.5,则豺有义务寻找猎物并接近它,以确定它们是否可以捕获猎物。这种行为机制是用数学模型建立的
4. 包围阶段:当豺群发现一个潜在的目标时,它们会一起包围它。豺群成员利用它们的敏捷性和沟通技巧策略性地在猎物周围定位,形成一个紧密的圆圈或半圆形。这种协同包围对于切断逃跑路线和减少猎物逃脱的机会至关重要。在算法中,当发声小于0.5且豺群成员数量大于10时,豺群开始包围猎物。数学模型如式所示:
z 代表随机个体
5. 攻击阶段:豺群在捕获猎物时执行协调和战略攻击。在通过隐形方法和声音通信的组合成功包围目标后,豺群开始攻击。通过同步的努力,他们发起了一系列快速而适时的攻击,每个成员轮流采取战略行动。
豺群对猎物大小的判断来源于最大的猎物大小。如果S>(C3+1)/2,
将余弦函数和正弦函数混合,模拟交换技术。一系列攻击的方程如下:
如果S≤(C3+1)/2,猎物足够小或足够弱,可以立即杀死,方程如下:
算法伪代码:
03. 对比验证
原文作者除了CEC-2019和CEC-2022基准集之外,还使用23个经典基准函数以及一系列现实世界的优化问题来评估DOA的有效性。研究结果表明,相对于已建立的元启发式算法,DOA通常具有竞争性的性能,在收敛时间和鲁棒性方面经常超过它们,特别是对于复杂的高维问题。。
更多详细结果,请参阅相应的文献。
参考文献
Mohammed, Bnyad O., et al. “Dhole Optimization Algorithm: a New Metaheuristic Algorithm for Solving Optimization Problems.” Cluster Computing, vol. 28, no. 7, July 2025, https://doi.org/10.1007/s10586-024-05005-1.
Matlab代码下载
微信搜索并关注-优化算法侠(英文名:Swarm-Opti),或扫描下方二维码关注,以算法名字搜索历史文章即可下载。
完整可运行代码
Dhole Optimization Algorithm.zip
点击链接跳转:
390种优化算法免费下载-matlab
https://mp.weixin.qq.com/s/EzKqtSwR9r2DkGj-ozJXwA
求解cec测试函数-matlab
cec2022测试函使用教程及matlab代码免费下载
绘制cec2017/018/2019/2020/2021/2022函数的三维图像教程,SO EASY!