CV-可视化图像聚类/分类算法的结果

本文介绍了如何使用matplotlib将图像聚类或分类的结果进行可视化。通过讲解如何安装matplotlib,加载和展示图片,特别是使用ImageFolder库,以及如何展示经过k-means算法聚类后的多个图片,帮助读者理解如何呈现类别中的图像集合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

我们在做图像分类或者聚类的时候,通常需要将结果可视化。这时候的结果就是一个类别有很多张图片,像下图这样,本文就介绍如何使用matplotlib将聚类结果可视化。
结果图片

如何安装matplotlib

使用如下pip命令

pip install matplotlib

如何加载并展示图片

可以使用PIL库将数据集中的图像进行加载,也可以使用pytorch中常用的datasets.ImageFolder函数加载图像。
使用PIL库

from PIL import image
img = Image.open(r"./jupyter/matplotlib/images/1.jpg")
fig = plt.figure(figsize=(8, 4))
ax1 = fig.add_subplot(121)
ax1.imshow(img)

使用datasets.ImageFolder库

from torchvision import datasets
train_dataset = datasets.ImageFolder(root='data2', transform=transform)

注意,这里的data2是一个文件夹,里边保存要进行聚类的照片文件夹,如data2/dog/1.jpg, data2/dog/2.jpg, data2/cat/1.jpg, data2/cat/2.jpg… 因此,使用ImageFolder一般读取的是一个文件夹中的所有图片,需要使用for循环等方式对图片展示,后文会有说明,请继续阅读。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值