Miniconda是什么

Miniconda是一个轻量级的Anaconda发行版,主要用于管理Python环境和包依赖。它本质上是Anaconda的最小化版本,仅包含conda包管理器、Python解释器及少量核心依赖,相比Anaconda更轻量、安装更快,同时保留了创建和管理虚拟环境、安装包的核心功能。

核心功能与用途

1. 环境隔离与管理
  • 创建独立环境:可基于不同Python版本(如3.8、3.10)或依赖需求创建隔离的开发环境,避免项目间依赖冲突。
    # 创建Python 3.10环境
    conda create -n myenv python=3.10
    
  • 环境切换:在不同项目环境间快速切换,无需重复安装依赖。
    conda activate myenv  # 激活环境 (在文件夹目录cmd-请务必到miniconda根目录以管理员身份运行执行命令,)
    conda deactivate      # 退出环境
    

此环境为python虚拟环境:

(venv) PS D:\python_project\DB-GPT> 

退出python虚拟环境:

deactivate

根目录cmd-管理员权限执行命令才可以:
在这里插入图片描述

在这里插入图片描述命令前显示(虚拟环境代表激活成功)
或者验证激活命令:

conda info --envs

输出中 * 会标记当前激活的环境:

# conda environments:
#
base                  D:\soft\miniconda3
dbgpt_env            * D:\soft\miniconda3\envs\dbgpt_env
dbgpt_hub             D:\soft\miniconda3\envs\dbgpt_hub
2. 包管理
  • 安装与管理包:通过conda或pip安装Python包,支持从Anaconda仓库、PyPI等源获取包。
    conda install numpy    # 从conda源安装
    pip install pandas     # 从PyPI安装
    
  • 依赖解析:自动处理包的依赖关系,避免手动解决依赖冲突。
3. 跨平台兼容性
  • 支持Windows、macOS、Linux等系统,且能统一管理不同平台的环境配置。

与Anaconda的区别

特性MinicondaAnaconda
安装体积约50MB(轻量级)约500MB(包含150+科学计算包)
预装包仅含conda、Python及基础工具包含numpy、pandas等常用科学包
适用场景自定义环境、轻量级开发快速启动数据分析、AI开发
扩展方式按需安装包(灵活)适合无需自定义的场景

典型使用场景

1. 开发环境隔离
  • 不同项目使用不同Python版本或依赖(如项目A用TensorFlow 2.4,项目B用PyTorch 2.0),通过Miniconda创建独立环境。
2. 科研与数据分析
  • 按需安装科学计算包(如scikit-learn、matplotlib),避免安装Anaconda带来的冗余包。
3. 服务器部署
  • 服务器资源有限时,用Miniconda搭建轻量级环境,减少资源占用。
4. 持续集成(CI)
  • 在CI流程中快速创建标准化环境,确保测试和部署的一致性。

安装与使用优势

  • 轻量高效:仅安装必要组件,适合磁盘空间有限或追求安装速度的场景。
  • 灵活可控:用户自主选择需要的包,避免Anaconda预装包带来的存储浪费。
  • 兼容性强:与Anaconda完全兼容,支持使用conda-forge等社区源扩展功能。

简单使用示例

  1. 安装Miniconda(以Windows为例):
    下载对应系统的安装包(如Miniconda3-py310_xxx.exe),按提示安装并勾选“Add to PATH”。

  2. 创建Python 3.10环境

    conda create -n myproject python=3.10
    
  3. 激活环境并安装包

    conda activate myproject
    conda install pandas   # 安装数据分析包
    
  4. 导出环境配置(用于分享或复现):

    conda env export > environment.yml
    

通过Miniconda,开发者可以更灵活地管理Python环境,尤其适合需要多环境隔离或资源优化的场景。

若要验证Miniconda是否安装成功,可按照以下步骤操作:

检查命令行中的conda版本

打开终端(Linux/macOS)或者Anaconda Prompt(Windows),输入以下命令:

conda --version
或者
conda -V

如果安装成功,会显示conda的版本号,类似这样:

conda 23.3.1

要是系统提示“command not found”或者类似错误,可能是Miniconda没有正确安装,或者其路径没有添加到系统环境变量里。

确认conda初始化情况

在终端输入以下命令:

conda info

如果输出了conda的配置信息,像环境路径、通道等,就表明conda已经正确初始化。

验证Python版本

输入下面的命令查看Python版本:

python --version

这能确认Miniconda附带的Python环境是否可以正常使用。

检查默认Python路径

使用以下命令查看Python的路径:

which python  # Linux/macOS
where python  # Windows

正常情况下,路径会指向Miniconda环境下的Python解释器,例如:

/Users/your_username/miniconda3/bin/python  # macOS/Linux
C:\Users\your_username\miniconda3\python.exe  # Windows

测试创建虚拟环境

创建一个名为test_env的虚拟环境并激活它:

conda create -n test_env python=3.9
conda activate test_env

激活环境后,再次检查Python版本:

python --version

此时显示的应该是新创建环境中Python的版本(例如Python 3.9.0)。之后可以通过以下命令停用环境:

conda deactivate

如果以上所有检查都能顺利通过,就说明Miniconda已经成功安装并配置好了。要是遇到问题,可以尝试重新安装,或者手动把Miniconda的路径添加到系统环境变量中。

大模型需要额外安装的依赖:
1.安装 jsonlines 库:

pip install jsonlines

验证安装:
安装后,可以通过 Python 交互式环境验证是否能导入该库:

python -c "import jsonlines; print('Success')"

2.安装 tiktoken 库:
验证安装:
在 Python 中测试是否能成功导入:

python -c "import tiktoken; print('Success')"

如果输出 Success,说明安装成功。

3.安装 transformers 库

pip install transformers

验证安装成功
在 Python 中测试导入:

python -c "from transformers import Seq2SeqTrainingArguments; print('安装成功')"

若不报错,说明安装完成。

4. windows系统使用本地git bash,要如何安装 libaio 开发库

#禁用async_io并安装
set DS_BUILD_AIO=0
pip install deepspeed

验证安装

python -c "import deepspeed; print('DeepSpeed安装成功')"

5.安装 PyTorch:

根据GPU 支持情况选择以下命令:

CPU 版本(无 GPU)

conda install pytorch torchvision torchaudio cpuonly -c pytorch

GPU 版本(NVIDIA GPU + CUDA 支持)
先检查 CUDA 版本(通过 nvidia-smi 命令),然后选择对应版本:

  • CUDA 11.8

    conda install pytorch torchvision torchaudio cudatoolkit=11.8 -c pytorch -c nvidia
    
  • CUDA 12.1

    conda install pytorch torchvision torchaudio cudatoolkit=12.1 -c pytorch -c nvidia
    
  1. 验证安装
    python -c "import torch; print(torch.__version__); print(torch.cuda.is_available())"
    
    • 如果输出版本号且 cuda.is_available()True,则 GPU 支持正常。
    • 如果为 False,但有 NVIDIA GPU,可能是 CUDA 版本不匹配。

完整解决方案

# 激活环境
conda activate dbgpt_hub

# 根据 GPU 情况选择安装命令(以下选其一):

# CPU 版本
conda install pytorch torchvision torchaudio cpuonly -c pytorch

# 或者 CUDA 11.8 版本
# conda install pytorch torchvision torchaudio cudatoolkit=11.8 -c pytorch -c nvidia

# 或者 CUDA 12.1 版本
# conda install pytorch torchvision torchaudio cudatoolkit=12.1 -c pytorch -c nvidia

# 再次运行脚本
sh dbgpt_hub_sql/scripts/gen_train_eval_data.sh

常见问题

  1. CUDA 版本不匹配

    • 若安装后 torch.cuda.is_available()False,可通过以下方式解决:
      # 卸载现有 PyTorch
      conda uninstall pytorch torchvision torchaudio
      
      # 安装与系统 CUDA 版本匹配的 PyTorch
      # 例如,如果系统的 CUDA 是 11.7,但没有完全匹配的版本,可尝试兼容的版本
      
  2. 使用 pip 安装
    若 conda 安装失败,可尝试 pip(需指定 CUDA 版本):

    # CPU 版本
    pip install torch torchvision torchaudio
    
    # CUDA 11.8 版本
    # pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
    
    # CUDA 12.1 版本
    # pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
    
  3. 依赖冲突
    如果项目有特定的 PyTorch 版本要求,需查看 requirements.txt 或文档,安装指定版本。

检查 CUDA 版本

在安装 PyTorch 前,建议确认CUDA 版本:

nvidia-smi  # 查看 CUDA 版本(Windows/Linux/macOS)

输出示例:

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 536.23       Driver Version: 536.23       CUDA Version: 12.2     |
|-------------------------------+----------------------+----------------------+

这里的 CUDA Version 是系统支持的最高版本,选择最接近的 PyTorch 版本即可。

仅根据提供的驱动程序版本30.0.101.1122,无法直接确定对应的CUDA版本。NVIDIA显卡驱动与CUDA并不是一一对应关系,较新的驱动通常可以支持多个旧版本的CUDA。

要确定当前系统中实际可用的CUDA版本,可以按照以下方法进行查看:

  • 使用命令行工具:在命令提示符(CMD)或PowerShell中输入nvidia -smi命令,该命令会显示电脑的GPU型号、驱动程序版本以及CUDA版本信息。例如,在输出结果中“CUDA Version: 11.7”就表示当前驱动支持的CUDA版本为11.7。
  • 查看系统信息:在Windows系统中,右键单击桌面并选择“NVIDIA控制面板”,点击左下角的“系统信息”,在弹出的窗口中切换到“组件”标签,找到“CUDA Version”,即可查看CUDA版本。
  • 通过代码查看:如果安装了PyTorch、TensorFlow等深度学习框架,可以通过代码来查看CUDA版本。以PyTorch为例,在代码中添加import torch; if torch.cuda.is_available(): print(f"CUDA Version: {torch.version.cuda}")即可查看CUDA版本。
    或者
    https://blog.csdn.net/taokzu/article/details/132434098
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值