Miniconda是一个轻量级的Anaconda发行版,主要用于管理Python环境和包依赖。它本质上是Anaconda的最小化版本,仅包含conda包管理器、Python解释器及少量核心依赖,相比Anaconda更轻量、安装更快,同时保留了创建和管理虚拟环境、安装包的核心功能。
核心功能与用途
1. 环境隔离与管理
- 创建独立环境:可基于不同Python版本(如3.8、3.10)或依赖需求创建隔离的开发环境,避免项目间依赖冲突。
# 创建Python 3.10环境 conda create -n myenv python=3.10
- 环境切换:在不同项目环境间快速切换,无需重复安装依赖。
conda activate myenv # 激活环境 (在文件夹目录cmd-请务必到miniconda根目录以管理员身份运行执行命令,) conda deactivate # 退出环境
此环境为python虚拟环境:
(venv) PS D:\python_project\DB-GPT>
退出python虚拟环境:
deactivate
根目录cmd-管理员权限执行命令才可以:
命令前显示(虚拟环境代表激活成功)
或者验证激活命令:
conda info --envs
输出中 * 会标记当前激活的环境:
# conda environments:
#
base D:\soft\miniconda3
dbgpt_env * D:\soft\miniconda3\envs\dbgpt_env
dbgpt_hub D:\soft\miniconda3\envs\dbgpt_hub
2. 包管理
- 安装与管理包:通过conda或pip安装Python包,支持从Anaconda仓库、PyPI等源获取包。
conda install numpy # 从conda源安装 pip install pandas # 从PyPI安装
- 依赖解析:自动处理包的依赖关系,避免手动解决依赖冲突。
3. 跨平台兼容性
- 支持Windows、macOS、Linux等系统,且能统一管理不同平台的环境配置。
与Anaconda的区别
特性 | Miniconda | Anaconda |
---|---|---|
安装体积 | 约50MB(轻量级) | 约500MB(包含150+科学计算包) |
预装包 | 仅含conda、Python及基础工具 | 包含numpy、pandas等常用科学包 |
适用场景 | 自定义环境、轻量级开发 | 快速启动数据分析、AI开发 |
扩展方式 | 按需安装包(灵活) | 适合无需自定义的场景 |
典型使用场景
1. 开发环境隔离
- 不同项目使用不同Python版本或依赖(如项目A用TensorFlow 2.4,项目B用PyTorch 2.0),通过Miniconda创建独立环境。
2. 科研与数据分析
- 按需安装科学计算包(如scikit-learn、matplotlib),避免安装Anaconda带来的冗余包。
3. 服务器部署
- 服务器资源有限时,用Miniconda搭建轻量级环境,减少资源占用。
4. 持续集成(CI)
- 在CI流程中快速创建标准化环境,确保测试和部署的一致性。
安装与使用优势
- 轻量高效:仅安装必要组件,适合磁盘空间有限或追求安装速度的场景。
- 灵活可控:用户自主选择需要的包,避免Anaconda预装包带来的存储浪费。
- 兼容性强:与Anaconda完全兼容,支持使用conda-forge等社区源扩展功能。
简单使用示例
-
安装Miniconda(以Windows为例):
下载对应系统的安装包(如Miniconda3-py310_xxx.exe
),按提示安装并勾选“Add to PATH”。 -
创建Python 3.10环境:
conda create -n myproject python=3.10
-
激活环境并安装包:
conda activate myproject conda install pandas # 安装数据分析包
-
导出环境配置(用于分享或复现):
conda env export > environment.yml
通过Miniconda,开发者可以更灵活地管理Python环境,尤其适合需要多环境隔离或资源优化的场景。
若要验证Miniconda是否安装成功,可按照以下步骤操作:
检查命令行中的conda版本
打开终端(Linux/macOS)或者Anaconda Prompt(Windows),输入以下命令:
conda --version
或者
conda -V
如果安装成功,会显示conda的版本号,类似这样:
conda 23.3.1
要是系统提示“command not found”或者类似错误,可能是Miniconda没有正确安装,或者其路径没有添加到系统环境变量里。
确认conda初始化情况
在终端输入以下命令:
conda info
如果输出了conda的配置信息,像环境路径、通道等,就表明conda已经正确初始化。
验证Python版本
输入下面的命令查看Python版本:
python --version
这能确认Miniconda附带的Python环境是否可以正常使用。
检查默认Python路径
使用以下命令查看Python的路径:
which python # Linux/macOS
where python # Windows
正常情况下,路径会指向Miniconda环境下的Python解释器,例如:
/Users/your_username/miniconda3/bin/python # macOS/Linux
C:\Users\your_username\miniconda3\python.exe # Windows
测试创建虚拟环境
创建一个名为test_env
的虚拟环境并激活它:
conda create -n test_env python=3.9
conda activate test_env
激活环境后,再次检查Python版本:
python --version
此时显示的应该是新创建环境中Python的版本(例如Python 3.9.0)。之后可以通过以下命令停用环境:
conda deactivate
如果以上所有检查都能顺利通过,就说明Miniconda已经成功安装并配置好了。要是遇到问题,可以尝试重新安装,或者手动把Miniconda的路径添加到系统环境变量中。
大模型需要额外安装的依赖:
1.安装 jsonlines 库:
pip install jsonlines
验证安装:
安装后,可以通过 Python 交互式环境验证是否能导入该库:
python -c "import jsonlines; print('Success')"
2.安装 tiktoken 库:
验证安装:
在 Python 中测试是否能成功导入:
python -c "import tiktoken; print('Success')"
如果输出 Success,说明安装成功。
3.安装 transformers 库
pip install transformers
验证安装成功
在 Python 中测试导入:
python -c "from transformers import Seq2SeqTrainingArguments; print('安装成功')"
若不报错,说明安装完成。
4. windows系统使用本地git bash,要如何安装 libaio 开发库
#禁用async_io并安装
set DS_BUILD_AIO=0
pip install deepspeed
验证安装
python -c "import deepspeed; print('DeepSpeed安装成功')"
5.安装 PyTorch:
根据GPU 支持情况选择以下命令:
CPU 版本(无 GPU):
conda install pytorch torchvision torchaudio cpuonly -c pytorch
GPU 版本(NVIDIA GPU + CUDA 支持):
先检查 CUDA 版本(通过 nvidia-smi
命令),然后选择对应版本:
-
CUDA 11.8:
conda install pytorch torchvision torchaudio cudatoolkit=11.8 -c pytorch -c nvidia
-
CUDA 12.1:
conda install pytorch torchvision torchaudio cudatoolkit=12.1 -c pytorch -c nvidia
- 验证安装:
python -c "import torch; print(torch.__version__); print(torch.cuda.is_available())"
- 如果输出版本号且
cuda.is_available()
为True
,则 GPU 支持正常。 - 如果为
False
,但有 NVIDIA GPU,可能是 CUDA 版本不匹配。
- 如果输出版本号且
完整解决方案
# 激活环境
conda activate dbgpt_hub
# 根据 GPU 情况选择安装命令(以下选其一):
# CPU 版本
conda install pytorch torchvision torchaudio cpuonly -c pytorch
# 或者 CUDA 11.8 版本
# conda install pytorch torchvision torchaudio cudatoolkit=11.8 -c pytorch -c nvidia
# 或者 CUDA 12.1 版本
# conda install pytorch torchvision torchaudio cudatoolkit=12.1 -c pytorch -c nvidia
# 再次运行脚本
sh dbgpt_hub_sql/scripts/gen_train_eval_data.sh
常见问题
-
CUDA 版本不匹配:
- 若安装后
torch.cuda.is_available()
为False
,可通过以下方式解决:# 卸载现有 PyTorch conda uninstall pytorch torchvision torchaudio # 安装与系统 CUDA 版本匹配的 PyTorch # 例如,如果系统的 CUDA 是 11.7,但没有完全匹配的版本,可尝试兼容的版本
- 若安装后
-
使用 pip 安装:
若 conda 安装失败,可尝试 pip(需指定 CUDA 版本):# CPU 版本 pip install torch torchvision torchaudio # CUDA 11.8 版本 # pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 # CUDA 12.1 版本 # pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
-
依赖冲突:
如果项目有特定的 PyTorch 版本要求,需查看requirements.txt
或文档,安装指定版本。
检查 CUDA 版本
在安装 PyTorch 前,建议确认CUDA 版本:
nvidia-smi # 查看 CUDA 版本(Windows/Linux/macOS)
输出示例:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 536.23 Driver Version: 536.23 CUDA Version: 12.2 |
|-------------------------------+----------------------+----------------------+
这里的 CUDA Version
是系统支持的最高版本,选择最接近的 PyTorch 版本即可。
仅根据提供的驱动程序版本30.0.101.1122,无法直接确定对应的CUDA版本。NVIDIA显卡驱动与CUDA并不是一一对应关系,较新的驱动通常可以支持多个旧版本的CUDA。
要确定当前系统中实际可用的CUDA版本,可以按照以下方法进行查看:
- 使用命令行工具:在命令提示符(CMD)或PowerShell中输入
nvidia -smi
命令,该命令会显示电脑的GPU型号、驱动程序版本以及CUDA版本信息。例如,在输出结果中“CUDA Version: 11.7”就表示当前驱动支持的CUDA版本为11.7。 - 查看系统信息:在Windows系统中,右键单击桌面并选择“NVIDIA控制面板”,点击左下角的“系统信息”,在弹出的窗口中切换到“组件”标签,找到“CUDA Version”,即可查看CUDA版本。
- 通过代码查看:如果安装了PyTorch、TensorFlow等深度学习框架,可以通过代码来查看CUDA版本。以PyTorch为例,在代码中添加
import torch; if torch.cuda.is_available(): print(f"CUDA Version: {torch.version.cuda}")
即可查看CUDA版本。
或者
https://blog.csdn.net/taokzu/article/details/132434098