一、项目展示
项目基于yolov5和pyqt5开发,以安全帽检测为例,亦可作为通用目标检测系统。适用于计算机相关大学生研究生课程设计、毕业设计以及相关比赛的界面展示。本项目GUI部分使用pyqt5制作,包括数据库、多线程、自定义组件等知识,亦可作为学习深度学习和pyqt5时的练手项目。b站视频展示。
功能以及特色如下:
- 系统带有登陆注册界面
- 输入数据格式:图片、文件夹、视频以及支持摄像头的实时检测,并自动保存最终检测结果。
- 支持选区检测功能,通过鼠标左键绘制多边形来确定检测区域,并且最终生成的结果视频中会保存绘制的多边形。
- 支持后处理过程中交并比(iou)以及置信度(conf)的动态调节。
- 检测视频和摄像头时,支持暂停、恢复、停止等功能,且停止后自动保存检测结果。
- 支持检测结果实时动态显示。
- 提供详细的项目说明以及环境配置教程,即使是深度学习小白也能轻松跑通项目。
- 项目提供项目系统代码,模型训练代码,模型训练结果以及数据集。
二、关键代码展示
# yolov5检测部分代码
import numpy as np
import torch
from models.common import DetectMultiBackend
from utils.general import (non_max_suppression, scale_boxes, xyxy2xywh)
from utils.torch_utils import select_device, time_sync
# 导入letterbox
from utils.augmentations import letterbox
# 参数定义
weights = './yolos.pt' # 权重文件地址 .pt文件
imgsz = (640, 640) # 输入图片的大小 默认640(pixels)
conf_thres = 0.9 # object置信度阈值 默认0.25 用在nms中
iou_thres = 0.9 # 做nms的iou阈值 默认0.45 用在nms中
max_det = 1000 # 每张图片最多的目标数量 用在nms中
device = '0' # 设置代码执行的设备 cuda device, i.e. 0 or 0,1,2,3 or cpu
classes = None # 在nms中是否是只保留某些特定的类 默认是None 就是所有类只要满足条件都可以保留 --class 0, or --class 0 2 3
agnostic_nms = False # 进行nms是否也除去不同类别之间的框 默认False
augment = False # 预测是否也要采用数据增强 TTA 默认False
visualize = False # 特征图可视化 默认FALSE
half = False # 是否使用半精度 Float16 推理 可以缩短推理时间 但是默认是False
dnn = False # 使用OpenCV DNN进行ONNX推理
# 获取设备
device = select_device(device)
def detect_model_load(weights_path):
# 载入模型
model = DetectMultiBackend(weights_path, device=device, dnn=dnn)
return model
@torch.no_grad()
def detect(model,img,conf_thres,iou_thres):
stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine
# Run inference
# 开始预测
model.warmup(imgsz=(1, 3, *imgsz)) # warmup
dt, seen = [0.0, 0.0, 0.0], 0
# 对图片进行处理
im0 = img
# Padded resize
im = letterbox(im0, imgsz, stride, auto=pt)[0]
# Convert
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
im = np.ascontiguousarray(im)
t1 = time_sync()
im = torch.from_numpy(im).to(device)
im = im.half() if half else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
t2 = time_sync()
dt[0] += t2 - t1
# Inference
# 预测
pred = model(im, augment=augment, visualize=visualize)
t3 = time_sync()
dt[1] += t3 - t2
# NMS
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
dt[2] += time_sync() - t3
# 用于存放结果
detections