Redis 五种io模型介绍

本文详细介绍了五种I/O模型:阻塞I/O、非阻塞I/O、多路复用I/O、信号驱动I/O及异步I/O的工作原理与特点。对比不同模型在资源消耗与效率方面的表现,探讨了它们在现代编程实践中的适用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 阻塞I/O模型:

最常用的I/O模型就是阻塞I/O模型,缺省情形下,所有文件操作都是阻塞的。我们以套接字接口为例来讲解此模型:在进程空间中调用revcfrom,其系统调用直到数据包到达且被复制到应用进程的缓存区中或者发生错误时才返回,在此期间一直会等待,进程在从调用recvfrom开始到它返回的整段时间内都是被阻塞的,因此被称为阻塞I/O模型
在这里插入图片描述

2. 非阻塞I/O模型:

recvfrom从应用层到内核的时候,如果该缓冲区没有数据的话,就直接返回一个EWOULDBLOCK错误,一般都对非阻塞I/O模型进行轮询检查这个状态,看内核是不是有数据到来
在这里插入图片描述

3.多路复用IO模型:
  1. 多路复用IO模型是目前使用得比较多的模型。Java NIO实际上就是多路复用IO。
  2. 在多路复用IO模型中,会有一个线程不断去轮询多个socket的状态,只有当socket真正有读写事件时,才真正调用实际的IO读写操作。因为在多路复用IO模型中,只需要使用一个线程就可以管理多个socket,系统不需要建立新的进程或者线程,也不必维护这些线程和进程,并且只有在真正有socket读写事件进行时,才会使用IO资源,所以它大大减少了资源占用。
  3. 在Java NIO中,是通过selector.select()去查询每个通道是否有到达事件,如果没有事件,则一直阻塞在那里,因此这种方式会导致用户线程的阻塞。
  4. 也许有朋友会说,我可以采用多线程+ 阻塞IO 达到类似的效果,但是由于在多线程 + 阻塞IO 中,每个socket对应一个线程,这样会造成很大的资源占用,并且尤其是对于长连接来说,线程的资源一直不会释放,如果后面陆续有很多连接的话,就会造成性能上的瓶颈。
  5. 而多路复用IO模式,通过一个线程就可以管理多个socket,只有当socket真正有读写事件发生才会占用资源来进行实际的读写操作。因此,多路复用IO比较适合连接数比较多的情况。
  6. 另外多路复用IO为何比非阻塞IO模型的效率高是因为在非阻塞IO中,不断地询问socket状态时通过用户线程去进行的,而在多路复用IO中,轮询每个socket状态是内核在进行的,这个效率要比用户线程要高的多。
  7. 不过要注意的是,多路复用IO模型是通过轮询的方式来检测是否有事件到达,并且对到达的事件逐一进行响应。因此对于多路复用IO模型来说,一旦事件响应体很大,那么就会导致后续的事件迟迟得不到处理,并且会影响新的事件轮询。
    在这里插入图片描述
4.信号驱动IO模型

在信号驱动IO模型中,当用户线程发起一个IO请求操作,会给对应的socket注册一个信号函数,然后用户线程会继续执行,当内核数据就绪时会发送一个信号给用户线程,用户线程接收到信号之后,便在信号函数中调用IO读写操作来进行实际的IO请求操作。这个一般用于UDP中,对TCP套接口几乎是没用的,原因是该信号产生得过于频繁,并且该信号的出现并没有告诉我们发生了什么事情
在这里插入图片描述

5.异步IO模型
  1. 异步IO模型才是最理想的IO模型,在异步IO模型中,当用户线程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从内核的角度,当它受到一个asynchronous read之后,它会立刻返回,说明read请求已经成功发起了,因此不会对用户线程产生任何block。然后,内核会等待数据准备完成,然后将数据拷贝到用户线程,当这一切都完成之后,内核会给用户线程发送一个信号,告诉它read操作完成了。也就说用户线程完全不需要关心实际的整个IO操作是如何进行的,只需要先发起一个请求,当接收内核返回的成功信号时表示IO操作已经完成,可以直接去使用数据了。
  2. 也就说在异步IO模型中,IO操作的两个阶段都不会阻塞用户线程,这两个阶段都是由内核自动完成,然后发送一个信号告知用户线程操作已完成。用户线程中不需要再次调用IO函数进行具体的读写。这点是和信号驱动模型有所不同的,在信号驱动模型中,当用户线程接收到信号表示数据已经就绪,然后需要用户线程调用IO函数进行实际的读写操作;而在异步IO模型中,收到信号表示IO操作已经完成,不需要再在用户线程中调用iO函数进行实际的读写操作。

注意

  1. 异步IO是需要操作系统的底层支持,在Java 7中,提供了Asynchronous IO。简称AIO
  2. 前面四种IO模型实际上都属于同步IO,只有最后一种是真正的异步IO,因为无论是多路复用IO还是信号驱动模型,IO操作的第2个阶段都会引起用户线程阻塞,也就是内核进行数据拷贝的过程都会让用户线程阻塞。
    在这里插入图片描述
<think>嗯,用户这次想详细了解五种IO模型的区别和对比。之前我已经解释过同步和异步IO的核心概念,但用户显然需要更系统的分类说明。从引用内容看,用户提供了Linux五种IO模型的资料,包括阻塞IO、非阻塞IOIO多路复用、信号驱动IO和异步IO的片段,还提到Java的实现差异。 用户可能正在学习网络编程或系统优化,需要明确五种模型的适用场景。尤其要注意引用[1]的对比表和引用[3]关于IO多路复用的描述——这两处是理解高并发处理的关键。引用[5]提到的DIRECT IO与AIO结合也值得展开,但用户当前问题聚焦在模型对比,可以简略带过。 需要特别注意技术定义的严谨性: - 阻塞/非阻塞指用户进程状态(是否被挂起) - 同步/异步指数据就绪通知方式(主动轮询 vs 被动回调) - IO多路复用本质仍是同步(如select阻塞进程),但通过单线程管理多连接提升效率 表格对比是最直观的方式,但需补充各模型典型代码片段(如引用[4]的非阻塞轮询示例)。对于Java开发者(引用[2]),要强调NIO属于同步非阻塞而非真异步,而AIO(AsynchronousChannel)才是内核级异步。 用户可能混淆的两个概念需要澄清: 1 文件IO(如磁盘读写)和网络IO的差异——前者更依赖AIO避免阻塞 2 非阻塞IO的轮询消耗CPU(引用[4]代码中的while循环)与IO多路复用的事件驱动区别 最后用实际案例强化认知:RedisIO多路复用处理网络请求,而数据库写入日志时常用AIO+DIRECT IO绕过内核缓存。这样既能回答用户问题,又自然引出后续可能感兴趣的优化方向。</think>以下是五种 I/O 模型的详细对比及适用场景分析,结合系统调用流程和编程特点进行说明: --- ### **1. 阻塞 I/O (Blocking I/O)** - **工作机制**: 用户进程发起 I/O 请求后**完全阻塞**,直到内核完成数据准备和复制(数据从内核缓冲区→用户空间)。 伪代码示例: ```c data = read(socket_fd); // 进程在此阻塞等待 process(data); // 数据就绪后才执行 ``` - **特点**: - 同步阻塞,简单易用 - CPU 利用率低(进程长时间休眠) - **适用场景**: 单线程程序、低并发请求(如 CLI 工具)[^1][^4]。 --- ### **2. 非阻塞 I/O (Non-blocking I/O)** - **工作机制**: 用户进程轮询检查 I/O 状态,未就绪时立即返回错误(如 `EWOULDBLOCK`),避免阻塞。 伪代码示例: ```c while (true) { data = read(socket_fd); if (data != ERROR) { // 数据就绪 process(data); break; } // 未就绪时执行其他任务(如 run_user_thread()) } ``` - **特点**: - 同步非阻塞,需主动轮询 - 减少阻塞时间,但**轮询消耗 CPU** - **适用场景**: 低延迟应用(如游戏服务器),需避免长时间阻塞[^1][^4]。 --- ### **3. I/O 多路复用 (I/O Multiplexing)** - **工作机制**: 通过 `select`/`poll`/`epoll` **监听多个 socket**,当任一 socket 数据就绪时通知进程。 流程: ```c while (true) { ready_fds = select(fds); // 阻塞直到有就绪的fd for (fd in ready_fds) { data = read(fd); // 非阻塞读取 process(data); } } ``` - **特点**: - 同步阻塞在 `select`,但**单线程管理多连接** - 减少线程数,提升高并发性能 - **适用场景**: 高并发服务器(如 Nginx、Redis),连接数 >1000 的场景[^1][^3]。 --- ### **4. 信号驱动 I/O (Signal-driven I/O)** - **工作机制**: 内核通过信号(如 `SIGIO`)通知进程数据就绪,进程再读取数据。 流程: 1. 注册信号处理函数:`fcntl(fd, F_SETFL, O_ASYNC);` 2. 收到信号后执行 `read()`。 - **特点**: - 异步通知,减少轮询开销 - 编程复杂(信号处理需谨慎) - **适用场景**: 嵌入式系统、UDP 服务(如 DNS 服务器)[^1]。 --- ### **5. 异步 I/O (Asynchronous I/O, AIO)** - **工作机制**: 用户进程发起 `aio_read()` 后立即返回;**内核完成数据准备+复制后**,通过回调函数通知进程。 伪代码示例: ```c aio_read(socket_fd, buffer, callback); // 立即返回 // 进程继续执行其他任务 void callback() { // 内核完成后触发 process(buffer); } ``` - **特点**: - 真正异步,**进程全程无阻塞** - 编程复杂(需事件循环和回调) - **适用场景**: 高吞吐系统(如数据库 InnoDB 引擎、大文件传输)[^1][^5]。 --- ### **五种模型对比总结** | **I/O 模型** | 阻塞行为 | 同步/异步 | CPU 利用率 | 编程复杂度 | 适用场景 | |---------------------|------------------------|-----------|------------|------------|------------------------------| | **阻塞 I/O** | 全程阻塞 | 同步 | 低 | 简单 | 单线程/低并发程序 | | **非阻塞 I/O** | 轮询时非阻塞 | 同步 | 中(有浪费)| 中等 | 低延迟应用 | | **I/O 多路复用** | 阻塞在 `select` | 同步 | 高 | 中等 | 高并发服务器(Nginx/Redis) | | **信号驱动 I/O** | 非阻塞(信号通知) | 异步 | 高 | 复杂 | 嵌入式/UDP 服务 | | **异步 I/O (AIO)** | 全程非阻塞 | 异步 | 最高 | 复杂 | 数据库/大文件传输 | > **关键区别**: > - **同步 I/O**:数据就绪后仍需**进程主动复制数据**(阻塞/非阻塞 I/O、I/O 多路复用、信号驱动 I/O)。 > - **异步 I/O**:内核完成**数据准备+复制**后通知进程(全程无参与)[^1][^5]。 --- ### **典型应用案例** 1. **数据库系统**: - InnoDB 引擎使用 AIO + DIRECT IO 绕过内核缓存,提升磁盘写入性能[^5]。 2. **Web 服务器**: - Nginx 通过 `epoll`(I/O 多路复用)处理百万并发连接。 - Node.js 基于事件循环实现异步 I/O。 3. **高性能计算**: - 大规模文件传输(如视频流)采用 AIO 避免阻塞[^1]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值