在农业生产中,及时准确地识别作物病害对于保障粮食安全和提高农民收入至关重要。本文将介绍一个基于深度学习的番茄叶片病害识别系统,涵盖模型训练、验证评估和图形用户界面应用的完整流程。
系统概述
该系统能够识别10种不同的番茄叶片状态,包括9种病害和1种健康状态:
- 番茄细菌性斑点病 (Tomato_Bacterial_spot)
- 番茄早疫病 (Tomato_Early_blight)
- 番茄晚疫病 (Tomato_Late_blight)
- 番茄叶霉病 (Tomato_Leaf_Mold)
- 番茄斑枯病 (Tomato_Septoria_leaf_spot)
- 番茄红蜘蛛危害 (Tomato_Spider_mites_Two_spotted_spider_mite)
- 番茄靶斑病 (Tomato__Target_Spot)
- 番茄黄化曲叶病毒病 (Tomato__Tomato_YellowLeaf__Curl_Virus)
- 番茄花叶病毒病 (Tomato__Tomato_mosaic_virus)
- 健康番茄叶片 (Tomato_healthy)
模型训练
关键技术点
-
模型架构:使用ResNet18作为基础模型,替换最后的全连接层以适应我们的10分类任务。
-
数据预处理:
transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), ])
-
训练配置:
- 优化器:Adam,学习率0.001
- 损失函数:交叉熵损失
- 训练轮数:3个epoch(实际应用中可增加)
- 批量大小:32
-
训练过程监控:
- 使用tqdm实现进度条
- 实时显示训练损失和准确率
- 每个epoch后计算验证集准确率
模型验证与评估
1. 混淆矩阵
可视化模型在各个类别上的预测情况,直观显示哪些类别容易混淆。
2. 分类指标报告
提供精确率(precision)、召回率(recall)和F1-score等详细指标
3. 分类指标柱状图
将各个类别的性能指标可视化,便于比较:
4. ROC曲线与AUC值
评估模型在不同阈值下的表现,计算每个类别的AUC值:
for i in range(num_classes):
fpr[i], tpr[i], _ = roc_curve(y_true_bin[:, i], y_probs[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
使用建议
- 重点关注F1-score,它是精确率和召回率的调和平均
- 对于不平衡数据集,可查看每个类别的表现而非仅关注总体准确率
- AUC值接近1表示模型在该类别上表现优异
图形用户界面
主要功能
- 图像选择:支持多选图片文件(JPG/JPEG/PNG)
- 实时预测:显示预测结果和置信度
- 结果展示:以图文结合的方式展示预测结果
- 界面清理:一键清除所有结果显示