leetcode 5703. 最大平均通过率(贪心+优先队列)

本文介绍了一种基于贪心算法和优先队列的数据结构来解决最大平均通过率问题的方法。通过建立大根堆并利用特定比较器进行排序,确保每次增加额外学生时都能最大化平均通过率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:最大平均通过率(贪心+优先队列)
题解:
思路 贪心: 每次添加都要让最大平均通过率的增加量最大.
数据结构: 大根堆
算法: 建一个以 x+1/y+1 -x/y大小作为优先级的大根堆. 然后往堆中添加 int[]类型数据. 每次从堆中取出元素.然后将这个元素的 x,y 都加一 放回 同时 额外学生数-- 直到额外学生分配完成.
时间复杂度: nlogn
代码:

class Solution {
    public double maxAverageRatio(int[][] classes, int extraStudents) {
        int num=classes.length;
       PriorityQueue<int []> priorityQueue=new PriorityQueue<>(new Comparator<int[]>() {
           @Override
           public int compare(int[] o1, int[] o2) {
               return 1.0*(o2[1]-o2[0])/((o2[1]+1)*o2[1])-1.0*(o1[1]-o1[0])/(o1[1]*(o1[1]+1))>0?1:-1;
           }
       });
        for (int[] aClass : classes) {
            priorityQueue.add(aClass);
        }
        while (extraStudents!=0){
            int[] temp=priorityQueue.poll();
            temp[0]++;
            temp[1]++;
            priorityQueue.add(temp);
            extraStudents--;
        }
        double ans=0;
        for (int[] aClass : classes) {
            ans+=1.0*aClass[0]/aClass[1];
        }
        return ans/num;
    }
}
资源下载链接为: https://pan.quark.cn/s/67c535f75d4c 在Android开发中,为了提升用户体验和视觉效果,背景模糊化处理是一种常用的设计手段。它可以为应用界面增添层次感,同时突出显示主要内容。本文将详细介绍如何在Android中实现背景模糊化功能。 首先,我们需要获取当前设备的壁纸作为背景。这可以通过WallpaperManager类来完成。调用WallpaperManager.getInstance(this.getContext())可以获取壁纸管理器实例,然后通过getDrawable()方法获取当前壁纸的Drawable对象。接下来,需要将壁纸Drawable转换为Bitmap对象,因为模糊处理通常需要在Bitmap上进行。可以通过((BitmapDrawable) wallpaperDrawable).getBitmap()来完成这一转换。 模糊处理的核心是使用Android的RenderScript API。RenderScript是一种高效的并行计算框架,特别适合处理图像操作。在blur()方法中,我们创建了一个RenderScript实例,并利用ScriptIntrinsicBlur类来实现模糊效果。ScriptIntrinsicBlur提供了设置模糊半径(setRadius(radius))和执行模糊操作(forEach(output))的方法。模糊半径radius可以根据需求调整,以达到期望的模糊程度。 然而,仅依赖ScriptIntrinsicBlur可能无法达到理想的模糊效果,因此我们还需要对原始图片进行缩放处理。为此,我们设计了small()和big()方法。先将图片缩小(small()),然后执行模糊操作,最后再将图片放大(big())。这种方式不仅可以增强模糊效果,还能在一定程度上提高处理速度。在small(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值