- 博客(4)
- 收藏
- 关注
原创 批处理归一化的多损失孪生网络的恶意软件检测
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、介绍二、相关工作三、模型框架2.读入数据总结前言目前基于深度学习的恶意软件检测方法通常需要训练大量的带有标签的样本或已经现有的恶意软件家族,对检测未知恶意软件能力有限。为了解决这一问题,本文提出了一个名为“批处理归一化的多损失孪生网络”模型,其可以在稀少的样本中达到很好的检测效率。我们的模型利用批处理归一化和多损失函数解决过拟合问题,使用小样本,造成二值交叉熵损失导致的梯度消失问题,增加特征嵌入空间提高检测精度。本文将
2021-11-06 14:00:20
411
1
原创 基于分解深度卷积网络的恶意软件变体检测
文章目录一、介绍一、pandas是什么?二、使用步骤1.引入库2.读入数据总结一、介绍提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库代码如下(示例):import numpy as npi..
2021-06-09 10:54:51
529
原创 使用CNN-XGboost模型进行恶意软件分类
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录一、介绍二、相关工作三、提出方案1.引入库2.读入数据四、实验评估五、总结一、介绍物联网在数字化运动中扮演着基础性角色。现在,物联网已经成为我们生活中一个重要组成部分,网络空间也成了交流和在线金融交易等线上活动平台。物联网和计算机系统的广泛使用吸引了恶意软件开发人员用他们的恶意代码感染当前环境并达到邪恶的意图。恶意软件就是指恶意目的的开发软件程序,如:未经授权访问个人或组织的敏感信息、扰乱计算机运行、绕过访问控制、显示一些恶
2021-06-01 16:38:13
2842
6
原创 基于深度神经网络的恶意软件变体检测方法研究
文章目录前言一、介绍二、提出方法1.引入库2.读入数据三、实验评估四、总结前言首先本文改进了基于CNN算法的串行化检测方案,然后利用改的CNN算法对API序列进行建模分析,挖掘更多的变异序列的局部相关信息,最后实现恶意代码变体检测。一、介绍目前代码检测的方法大多数研究都是基于特征提取的方法,通过提取特征例如:字节码,汇编码,PE结构或恶意代码动态执行结果,并采用各种机器学习算法完成对恶意代码变体检测。例如:一个恶意代码检测方法就是提取恶意代码反汇编文件的操作码序列转化为一个点阵图作为特征进..
2021-05-27 08:48:40
913
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人