【扩散模型思考记录(三)】分类、回归与扩散模型的关联

系列文章目录



前言

以下是分类、回归、扩散模型的对比表格:

对比维度分类问题回归问题扩散模型
任务目标预测离散类别标签预测连续数值学习数据分布并生成新样本
输入/输出输入:特征向量
输出:类别概率
输入:特征向量
输出:连续值
输入:含噪数据 ( x t ) (x_t) (xt) + 时间步 (t)
输出:预测噪声 ( ϵ θ ) (\epsilon_{\theta}) (ϵθ)
损失函数交叉熵损失(CrossEntropyLoss)均方误差损失(MSELoss)均方误差损失(MSELoss,预测噪声)
或变分下界损失
模型结构逻辑回归、CNN、Transformer等线性回归、决策树、SVM回归等U-Net、DiT(去噪器)
核心关注点类别间的边界划分输入与输出的函数映射关系噪声分布建模与去噪过程
典型应用图像分类、情感分析房价预测、温度预测图像生成、分子结构生成
数据标签类型离散(如0/1,类别名称)连续(如实数、浮点数)隐含标签(数据分布本身)
输出特性概率分布或离散值连续数值噪声预测(用于反向去噪生成样本)

关键区别总结:

  1. 任务本质:分类和回归是监督学习任务,依赖显式标签;扩散模型是生成模型,目标是学习数据分布。
  2. 损失函数:分类用交叉熵,回归和扩散模型均用MSE,但扩散模型的MSE针对噪声预测而非直接重构输入。
  3. 输出目标:分类输出类别概率,回归输出连续值,扩散模型输出噪声以指导去噪过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值