系列文章目录
前言
以下是分类、回归、扩散模型的对比表格:
对比维度 | 分类问题 | 回归问题 | 扩散模型 |
---|---|---|---|
任务目标 | 预测离散类别标签 | 预测连续数值 | 学习数据分布并生成新样本 |
输入/输出 | 输入:特征向量 输出:类别概率 | 输入:特征向量 输出:连续值 | 输入:含噪数据
(
x
t
)
(x_t)
(xt) + 时间步 (t) 输出:预测噪声 ( ϵ θ ) (\epsilon_{\theta}) (ϵθ) |
损失函数 | 交叉熵损失(CrossEntropyLoss) | 均方误差损失(MSELoss) | 均方误差损失(MSELoss,预测噪声) 或变分下界损失 |
模型结构 | 逻辑回归、CNN、Transformer等 | 线性回归、决策树、SVM回归等 | U-Net、DiT(去噪器) |
核心关注点 | 类别间的边界划分 | 输入与输出的函数映射关系 | 噪声分布建模与去噪过程 |
典型应用 | 图像分类、情感分析 | 房价预测、温度预测 | 图像生成、分子结构生成 |
数据标签类型 | 离散(如0/1,类别名称) | 连续(如实数、浮点数) | 隐含标签(数据分布本身) |
输出特性 | 概率分布或离散值 | 连续数值 | 噪声预测(用于反向去噪生成样本) |
关键区别总结:
- 任务本质:分类和回归是监督学习任务,依赖显式标签;扩散模型是生成模型,目标是学习数据分布。
- 损失函数:分类用交叉熵,回归和扩散模型均用MSE,但扩散模型的MSE针对噪声预测而非直接重构输入。
- 输出目标:分类输出类别概率,回归输出连续值,扩散模型输出噪声以指导去噪过程。