ORB-SLAM2代码阅读ORBextractor.cpp

本文深入探讨ORB-SLAM2的源码实现,详细解析ORB特征点提取及描述子生成过程,包括灰度质心法计算特征旋转角度、二进制描述子提取、特征点分布优化等关键技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

接触ORB-SLAM很久了但是一直没能自己认真读一读代码,水平有限所以找了很多资料借鉴理解,为了方便记忆融合记录一下
**

参考文档

**
原文链接1
原文链接2

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <vector>
#include <iterator>

#include "ORBextractor.h"
#include <iostream>
using namespace cv;
using namespace std;

namespace ORB_SLAM2
{

const int PATCH_SIZE = 31;//用来做灰度质心的圆的直径
const int HALF_PATCH_SIZE = 15;//圆的半径15+15+1(1为中心点的那个像素)
const int EDGE_THRESHOLD = 19;//边界阈值

//灰度质心法(IC)计算特征的旋转
static float IC_Angle(const Mat& image, Point2f pt,  const vector<int> & u_max)
{
    int m_01 = 0, m_10 = 0;

    const uchar* center = &image.at<uchar> (cvRound(pt.y), cvRound(pt.x));//cvRound 返回跟参数最接近的整数值;

    // Treat the center line differently, v=0
    for (int u = -HALF_PATCH_SIZE; u <= HALF_PATCH_SIZE; ++u)
        m_10 += u * center[u];

    // Go line by line in the circuI853lar patch
    int step = (int)image.step1();
    for (int v = 1; v <= HALF_PATCH_SIZE; ++v)
    {
        // Proceed over the two lines
        int v_sum = 0;
        int d = u_max[v];
        for (int u = -d; u <= d; ++u)
        {
            int val_plus = center[u + v*step], val_minus = center[u - v*step];
            v_sum += (val_plus - val_minus);
            m_10 += u * (val_plus + val_minus);
        }
        m_01 += v * v_sum;
    }

    return fastAtan2((float)m_01, (float)m_10);
}


const float factorPI = (float)(CV_PI/180.f);
static void computeOrbDescriptor(const KeyPoint& kpt,
                                 const Mat& img, const Point* pattern,
                                 uchar* desc)
{
    float angle = (float)kpt.angle*factorPI;
    float a = (float)cos(angle), b = (float)sin(angle);

    const uchar* center = &img.at<uchar>(cvRound(kpt.pt.y), cvRound(kpt.pt.x));
    const int step = (int)img.step;

    #define GET_VALUE(idx) \
        center[cvRound(pattern[idx].x*b + pattern[idx].y*a)*step + \
               cvRound(pattern[idx].x*a - pattern[idx].y*b)]


    for (int i = 0; i < 32; ++i, pattern += 16)
    {
        int t0, t1, val;
        t0 = GET_VALUE(0); t1 = GET_VALUE(1);
        val = t0 < t1;
        t0 = GET_VALUE(2); t1 = GET_VALUE(3);
        val |= (t0 < t1) << 1;
        t0 = GET_VALUE(4); t1 = GET_VALUE(5);
        val |= (t0 < t1) << 2;
        t0 = GET_VALUE(6); t1 = GET_VALUE(7);
        val |= (t0 < t1) << 3;
        t0 = GET_VALUE(8); t1 = GET_VALUE(9);
        val |= (t0 < t1) << 4;
        t0 = GET_VALUE(10); t1 = GET_VALUE(11);
        val |= (t0 < t1) << 5;
        t0 = GET_VALUE(12); t1 = GET_VALUE(13);
        val |= (t0 < t1) << 6;
        t0 = GET_VALUE(14); t1 = GET_VALUE(15);
        val |= (t0 < t1) << 7;

        desc[i] = (uchar)val;
    }

    #undef GET_VALUE
}
//经过机器学习训练过的点,用来做二进制描述子提取
static int bit_pattern_31_[256*4] =
{
   
    为了节省篇幅。。。
};

ORBextractor::ORBextractor(int _nfeatures, float _scaleFactor, int _nlevels,
         int _iniThFAST, int _minThFAST):
    nfeatures(_nfeatures), scaleFactor(_scaleFactor), nlevels(_nlevels),
    iniThFAST(_iniThFAST), minThFAST(_minThFAST)
{
    // nfeatures:期望提取的特征点个数
    // nlevels:金字塔层数
    // scaleFactor:相邻两层金字塔之间的相对尺度因子,大于1,金字塔越往上的图像每个像素代表的范围越大
    // mvScaleFactor:累乘得到每一层相对第一层的尺度因子
    // mvLevelSigma2:尺度因子mvScaleFactor的平方
    // mvInvScaleFactor:尺度因子mvScaleFactor的逆
    // mvInvLevelSigma2:尺度因子平方mvLevelSigma2的逆
    // mnFeaturesPerLevel:记录每一层期望提取的特征点个数
    // iniThFAST:提取fast特征点的默认阈值
    // minThFAST:如果使用iniThFAST默认阈值提取不到特征点则使用最小阈值再次提取

    mvScaleFactor.resize(nlevels);
    mvLevelSigma2.resize(nlevels);
    mvScaleFactor[0]=1.0f;
    mvLevelSigma2[0]=1.0f;
    for(int i=1; i<nlevels; i++)
    {
        mvScaleFactor[i]=mvScaleFactor[i-1]*scaleFactor;
        mvLevelSigma2[i]=mvScaleFactor[i]*mvScaleFactor[i];
    }

    mvInvScaleFactor.resize(nlevels);
    mvInvLevelSigma2.resize(nlevels);
    for(int i=0; i<nlevels; i++)
    {
        mvInvScaleFactor[i]=1.0f/mvScaleFactor[i];
        mvInvLevelSigma2[i]=1.0f/mvLevelSigma2[i];
    }

    mvImagePyramid.resize(nlevels);

    mnFeaturesPerLevel.resize(nlevels);
    float factor = 1.0f / scaleFactor;
    // 总共期望提取nfeatures个特征点,根据尺度因子等比数列,计算出金字塔最底层期望提取的特征点个数
    float nDesiredFeaturesPerScale = nfeatures*(1 - factor)/(1 - (float)pow((double)factor, (double)nlevels));

    // 根据尺度因子计算金字塔每一层期望提取的特征点个数(越往上提取的特征点个数越少)
    int sumFeatures = 0;
    for( int level = 0; level < nlevels-1; level++ )
    {
        mnFeaturesPerLevel[level] = cvRound(nDesiredFeaturesPerScale);
        sumFeatures += mnFeaturesPerLevel[level];
        nDesiredFeaturesPerScale *= factor;
    }
    mnFeaturesPerLevel[nlevels-1] = std::max(nfeatures - sumFeatures, 0);

    const int npoints = 512;
    const Point* pattern0 = (const Point*)bit_pattern_31_;
    std::copy(pattern0, pattern0 + npoints, std::back_inserter(pattern));

    //This is for orientation
    // pre-compute the end of a row in a circular patch
    umax.resize(HALF_PATCH_SIZE + 1);
// 将v坐标划分为两部分进行计算,主要为了确保计算特征主方向的时候,x,y方向对称
    int v, v0, vmax = cvFloor(HALF_PATCH_SIZE * sqrt(2.f) / 2 + 1);
    int vmin = cvCeil(HALF_PATCH_SIZE * sqrt(2.f) / 2);
    const double hp2 = HALF_PATCH_SIZE*HALF_PATCH_SIZE;
    for (v = 0; v <= vmax; ++v)
        umax[v] = cvRound(sqrt(hp2 - v * v));

    // Make sure we are symmetric
    for (v = HALF_PATCH_SIZE, v0 = 0; v >= vmin; --v)
    {
        while (umax[v0] == umax[v0 + 1])
            ++v0;
        umax[v] = v0;
        ++v0;
    }
}

static void computeOrientation(const Mat& image, vector<KeyPoint>& keypoints, const vector<int>& umax)
{
    for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
         keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
    {
        keypoint->angle = IC_Angle(image, keypoint->pt, umax);
    }
}

void ExtractorNode::DivideNode(ExtractorNode &n1, ExtractorNode &n2, ExtractorNode &n3, ExtractorNode &n4)
{
    const int halfX = ceil(static_cast<float>(UR.x-UL.x)/2);
    const int halfY = ceil(static_cast<float>(BR.y-UL.y)/2);

    //Define boundaries of childs
    n1.UL = UL;
    n1.UR = cv::Point2i(UL.x+halfX,UL.y);
    n1.BL = cv::Point2i(UL.x,UL.y+halfY);
    n1.BR = cv::Point2i(UL.x+halfX,UL.y+halfY);
    n1.vKeys.reserve(vKeys.size());

    n2.UL = n1.UR;
    n2.UR = UR;
    n2.BL = n1.BR;
    n2.BR = cv::Point2i(UR.x,UL.y+halfY);
    n2.vKeys.reserve(vKeys.size());

    n3.UL = n1.BL;
    n3.UR = n1.BR;
    n3.BL = BL;
    n3.BR = cv::Point2i(n1.BR.x,BL.y);
    n3.vKeys.reserve(vKeys.size());

    n4.UL = n3.UR;
    n4.UR = n2.BR;
    n4.BL = n3.BR;
    n4.BR = BR;
    n4.vKeys.reserve(vKeys.size());

    //Associate points to childs
    for(size_t i=0;i<vKeys.size();i++)
    {
        const cv::KeyPoint &kp = vKeys[i];
        if(kp.pt.x<n1.UR.x)
        {
            if(kp.pt.y<n1.BR.y)
                n1.vKeys.push_back(kp);
            else
                n3.vKeys.push_back(kp);
        }
        else if(kp.pt.y<n1.BR.y)
            n2.vKeys.push_back(kp);
        else
            n4.vKeys.push_back(kp);
    }

    if(n1.vKeys.size()==1)
        n1.bNoMore = true;
    if(n2.vKeys.size()==1)
        n2.bNoMore = true;
    if(n3.vKeys.size()==1)
        n3.bNoMore = true;
    if(n4.vKeys.size()==1)
        n4.bNoMore = true;

}

vector<cv::KeyPoint> ORBextractor::DistributeOctTree(const vector<cv::KeyPoint>& vToDistributeKeys, const int &minX,
                                       const int &maxX, const int &minY, const int &maxY, const int &N, const int &level)
{
    // Compute how many initial nodes
    // 图像大小一般为矩形,且宽高比不是整数,
    const int nIni = round(static_cast<float>(maxX-minX)/(maxY-minY));

    // note:如果图像的宽不到高的一半,hX=0,会出问题,据此推断,这里默认为图像宽大于高的情况
    const float hX = static_cast<float>(maxX-minX)/nIni;

    // lNodes用于存放节点数据,note:只保留叶子节点
    // ExtractorNode中UL、UR、BL、BR记录了该节点(区域)的四个顶点坐标
    // ExtractorNode中的vKeys记录了属于该节点(区域)的所有特征点,这里有些低效,容器里存的是特征点而不是特征点的指针
    list<ExtractorNode> lNodes;

    // 记录初始节点的指针,为了方便根据特征点x坐标快速找到对应的节点(x/hX)
    vector<ExtractorNode*> vpIniNodes;
    vpIniNodes.resize(nIni);

    // step1: 建立分裂的初始节点
    // step1.1:确定节点区域
    for(int i=0; i<nIni; i++)
    {
        ExtractorNode ni;
        ni.UL = cv::Point2i(hX*static_cast<float>(i),0);
        ni.UR = cv::Point2i(hX*static_cast<float>(i+1),0);
        ni.BL = cv::Point2i(ni.UL.x,maxY-minY); // wubo,为什么要减去minY
        ni.BR = cv::Point2i(ni.UR.x,maxY-minY);
        ni.vKeys.reserve(vToDistributeKeys.size());

        lNodes.push_back(ni);
        vpIniNodes[i] = &lNodes.back();
    }

    // Associate points to childs
    // step1.2:将所有特征点关联到对应的节点(区域)
    for(size_t i=0;i<vToDistributeKeys.size();i++)
    {
        const cv::KeyPoint &kp = vToDistributeKeys[i];
        vpIniNodes[kp.pt.x/hX]->vKeys.push_back(kp);
    }

    list<ExtractorNode>::iterator lit = lNodes.begin();

    while(lit!=lNodes.end())
    {
        if(lit->vKeys.size()==1)    // 如果这个区域只有一个特征点,则不用再构建子树
        {
            lit->bNoMore=true;
            lit++;
        }
        else if(lit->vKeys.empty()) // 如果这个区域一个特征点都没有,则删除该空节点
            lit = lNodes.erase(lit);
        else
            lit++;
    }

    bool bFinish = false;

    int iteration = 0;

    vector<pair<int,ExtractorNode*> > vSizeAndPointerToNode;
    vSizeAndPointerToNode.reserve(lNodes.size()*4);

    // 利用四叉树方法对图像进行划分区域
    while(!bFinish)
    {
        iteration++;

        int prevSize = lNodes.size();

        lit = lNodes.begin();

        int nToExpand = 0;

        vSizeAndPointerToNode.clear();

        // step2:广度搜索的方式遍历所有节点,将目前的子区域进行划分
        while(lit!=lNodes.end())
        {
            if(lit->bNoMore)
            {
                // If node only contains one point do not subdivide and continue
                lit++;
                continue;
            }
            else
            {
                // If more than one point, subdivide
                // 如果这个区域不止一个特征点,则进一步细分成四个子区域
                ExtractorNode n1,n2,n3,n4;
                lit->DivideNode(n1,n2,n3,n4);

                // Add childs if they contain points
                // 如果子节点中包含特征点,则将该节点添加到节点链表中
                if(n1.vKeys.size()>0)
                {
                    // note:将新分裂出的节点插入到容器前面,迭代器后面的都是上一次分裂还未访问的节点
                    lNodes.push_front(n1);
                    // 如果该节点中包含的特征点超过1,则该节点将会继续扩展子节点,使用nToExpand统计接下来要扩展的节点数
                    if(n1.vKeys.size()>1)
                    {
                        nToExpand++;
                        // 按照 pair<节点中特征点个数,节点索引> 建立索引,后续通过排序快速筛选出包含特征点个数比较多的节点
                        vSizeAndPointerToNode.push_back(make_pair(n1.vKeys.size(),&lNodes.front()));
                        // 记录节点自己的迭代器指针
                        lNodes.front().lit = lNodes.begin();
                    }
                }
                if(n2.vKeys.size()>0)
                {
                    lNodes.push_front(n2);
                    if(n2.vKeys.size()>1)
                    {
                        nToExpand++;
                        vSizeAndPointerToNode.push_back(make_pair(n2.vKeys.size(),&lNodes.front()));
                        lNodes.front().lit = lNodes.begin();
                    }
                }
                if(n3.vKeys.size()>0)
                {
                    lNodes.push_front(n3);
                    if(n3.vKeys.size()>1)
                    {
                        nToExpand++;
                        vSizeAndPointerToNode.push_back(make_pair(n3.vKeys.size(),&lNodes.front()));
                        lNodes.front().lit = lNodes.begin();
                    }
                }
                if(n4.vKeys.size()>0)
                {
                    lNodes.push_front(n4);
                    if(n4.vKeys.size()>1)
                    {
                        nToExpand++;
                        vSizeAndPointerToNode.push_back(make_pair(n4.vKeys.size(),&lNodes.front()));
                        lNodes.front().lit = lNodes.begin();
                    }
                }

                // 该节点已经分裂完,删除该节点
                lit=lNodes.erase(lit);
                continue;
            }
        }       

        // step3:Node数快接近要求数目时,优先对包含特征点比较多的区域进行划分
        // Finish if there are more nodes than required features
        // or all nodes contain just one point
        if((int)lNodes.size()>=N || (int)lNodes.size()==prevSize)
        {
            bFinish = true;
        }
        else if(((int)lNodes.size()+nToExpand*3)>N)     // 当再划分之后所有的Node数快接近要求数目时,优先对包含特征点比较多的区域进行划分
        {
            while(!bFinish)
            {
                prevSize = lNodes.size();

                vector<pair<int,ExtractorNode*> > vPrevSizeAndPointerToNode = vSizeAndPointerToNode;
                vSizeAndPointerToNode.clear();

                // 对需要划分的部分进行排序, 即对兴趣点数较多的区域进行划分
                sort(vPrevSizeAndPointerToNode.begin(),vPrevSizeAndPointerToNode.end());
                for(int j=vPrevSizeAndPointerToNode.size()-1;j>=0;j--)
                {
                    ExtractorNode n1,n2,n3,n4;
                    vPrevSizeAndPointerToNode[j].second->DivideNode(n1,n2,n3,n4);

                    // Add childs if they contain points
                    if(n1.vKeys.size()>0)
                    {
                        lNodes.push_front(n1);
                        if(n1.vKeys.size()>1)
                        {
                            vSizeAndPointerToNode.push_back(make_pair(n1.vKeys.size(),&lNodes.front()));
                            lNodes.front().lit = lNodes.begin();
                        }
                    }
                    if(n2.vKeys.size()>0)
                    {
                        lNodes.push_front(n2);
                        if(n2.vKeys.size()>1)
                        {
                            vSizeAndPointerToNode.push_back(make_pair(n2.vKeys.size(),&lNodes.front()));
                            lNodes.front().lit = lNodes.begin();
                        }
                    }
                    if(n3.vKeys.size()>0)
                    {
                        lNodes.push_front(n3);
                        if(n3.vKeys.size()>1)
                        {
                            vSizeAndPointerToNode.push_back(make_pair(n3.vKeys.size(),&lNodes.front()));
                            lNodes.front().lit = lNodes.begin();
                        }
                    }
                    if(n4.vKeys.size()>0)
                    {
                        lNodes.push_front(n4);
                        if(n4.vKeys.size()>1)
                        {
                            vSizeAndPointerToNode.push_back(make_pair(n4.vKeys.size(),&lNodes.front()));
                            lNodes.front().lit = lNodes.begin();
                        }
                    }

                    lNodes.erase(vPrevSizeAndPointerToNode[j].second->lit);

                    if((int)lNodes.size()>=N)
                        break;
                }

                if((int)lNodes.size()>=N || (int)lNodes.size()==prevSize)
                    bFinish = true;

            }
        }
    }

    // Retain the best point in each node
    // step4:保留每个区域响应值最大的一个兴趣点
    vector<cv::KeyPoint> vResultKeys;
    vResultKeys.reserve(nfeatures);
    for(list<ExtractorNode>::iterator lit=lNodes.begin(); lit!=lNodes.end(); lit++)
    {
        vector<cv::KeyPoint> &vNodeKeys = lit->vKeys;
        cv::KeyPoint* pKP = &vNodeKeys[0];
        float maxResponse = pKP->response;

        for(size_t k=1;k<vNodeKeys.size();k++)
        {
            if(vNodeKeys[k].response>maxResponse)
            {
                pKP = &vNodeKeys[k];
                maxResponse = vNodeKeys[k].response;
            }
        }

        vResultKeys.push_back(*pKP);
    }

    return vResultKeys;
}

void ORBextractor::ComputeKeyPointsOctTree(vector<vector<KeyPoint> >& allKeypoints)
{
    allKeypoints.resize(nlevels);

    const float W = 30;

    // 对金字塔每一层图像提取特征点
    for (int level = 0; level < nlevels; ++level)
    {
        const int minBorderX = EDGE_THRESHOLD-3;
        const int minBorderY = minBorderX;
        const int maxBorderX = mvImagePyramid[level].cols-EDGE_THRESHOLD+3;
        const int maxBorderY = mvImagePyramid[level].rows-EDGE_THRESHOLD+3;

        vector<cv::KeyPoint> vToDistributeKeys;
        vToDistributeKeys.reserve(nfeatures*10);

        const float width = (maxBorderX-minBorderX);
        const float height = (maxBorderY-minBorderY);

        // 每个区域块的大小为W,将图像划分为(nRows*nCols)个区域,在无法取整的情况下,调整每个区域大小为(wCell*hCell)
        const int nCols = width/W;
        const int nRows = height/W;
        const int wCell = ceil(width/nCols);
        const int hCell = ceil(height/nRows);

        // wubo 如果直接对整张图进行特征点检测,则对检测结果判断每个区域内是否有特征点会比较麻烦,因此这里按照一个区域一个区域的方式检测特征点
        // 按区域提取特征点---> vToDistributeKeys
        for(int i=0; i<nRows; i++)
        {
            // 计算每个块的Y方向上起始和终止区域(iniY,maxY)
            const float iniY =minBorderY+i*hCell;
            float maxY = iniY+hCell+6;

            if(iniY>=maxBorderY-3)
                continue;
            if(maxY>maxBorderY)
                maxY = maxBorderY;

            for(int j=0; j<nCols; j++)
            {
                // 计算每个块的X方向上起始和终止区域(iniX,maxX)
                const float iniX =minBorderX+j*wCell;
                float maxX = iniX+wCell+6;
                if(iniX>=maxBorderX-6)
                    continue;
                if(maxX>maxBorderX)
                    maxX = maxBorderX;

                // opencv/modules/features2d/src/fast.cpp
                // 在(iniX, iniY)(maxX, maxY)范围内提取FAST关键点, 并开启非极大值抑制(防止在一个很小的区域内提取过多的特征点)
                vector<cv::KeyPoint> vKeysCell;
                FAST(mvImagePyramid[level].rowRange(iniY,maxY).colRange(iniX,maxX),
                     vKeysCell,iniThFAST,true);

                // 如果使用iniThFAST默认阈值提取不到特征点则使用最小阈值minThFAST再次提取
                if(vKeysCell.empty())
                {
                    FAST(mvImagePyramid[level].rowRange(iniY,maxY).colRange(iniX,maxX),
                         vKeysCell,minThFAST,true);
                }

                if(!vKeysCell.empty())
                {
                    for(vector<cv::KeyPoint>::iterator vit=vKeysCell.begin(); vit!=vKeysCell.end();vit++)
                    {
                        (*vit).pt.x+=j*wCell;
                        (*vit).pt.y+=i*hCell;
                        vToDistributeKeys.push_back(*vit);
                    }
                }

            }
        }

        vector<KeyPoint> & keypoints = allKeypoints[level];
        keypoints.reserve(nfeatures);

        // 根据mnFeaturesPerLevel,即该层的兴趣点数,对特征点进行剔除
        keypoints = DistributeOctTree(vToDistributeKeys, minBorderX, maxBorderX,
                                      minBorderY, maxBorderY,mnFeaturesPerLevel[level], level);

        const int scaledPatchSize = PATCH_SIZE*mvScaleFactor[level];

        // Add border to coordinates and scale information
        const int nkps = keypoints.size();
        for(int i=0; i<nkps ; i++)
        {
            keypoints[i].pt.x+=minBorderX;
            keypoints[i].pt.y+=minBorderY;
            keypoints[i].octave=level;
            keypoints[i].size = scaledPatchSize;
        }
    }

    // compute orientations
    for (int level = 0; level < nlevels; ++level)
        computeOrientation(mvImagePyramid[level], allKeypoints[level], umax);
}

void ORBextractor::ComputeKeyPointsOld(std::vector<std::vector<KeyPoint> > &allKeypoints)
{
    allKeypoints.resize(nlevels);

    float imageRatio = (float)mvImagePyramid[0].cols/mvImagePyramid[0].rows;

    for (int level = 0; level < nlevels; ++level)
    {
        const int nDesiredFeatures = mnFeaturesPerLevel[level];

        const int levelCols = sqrt((float)nDesiredFeatures/(5*imageRatio));
        const int levelRows = imageRatio*levelCols;

        const int minBorderX = EDGE_THRESHOLD;
        const int minBorderY = minBorderX;
        const int maxBorderX = mvImagePyramid[level].cols-EDGE_THRESHOLD;
        const int maxBorderY = mvImagePyramid[level].rows-EDGE_THRESHOLD;

        const int W = maxBorderX - minBorderX;
        const int H = maxBorderY - minBorderY;
        const int cellW = ceil((float)W/levelCols);
        const int cellH = ceil((float)H/levelRows);

        const int nCells = levelRows*levelCols;
        const int nfeaturesCell = ceil((float)nDesiredFeatures/nCells);

        vector<vector<vector<KeyPoint> > > cellKeyPoints(levelRows, vector<vector<KeyPoint> >(levelCols));

        vector<vector<int> > nToRetain(levelRows,vector<int>(levelCols,0));
        vector<vector<int> > nTotal(levelRows,vector<int>(levelCols,0));
        vector<vector<bool> > bNoMore(levelRows,vector<bool>(levelCols,false));
        vector<int> iniXCol(levelCols);
        vector<int> iniYRow(levelRows);
        int nNoMore = 0;
        int nToDistribute = 0;


        float hY = cellH + 6;

        for(int i=0; i<levelRows; i++)
        {
            const float iniY = minBorderY + i*cellH - 3;
            iniYRow[i] = iniY;

            if(i == levelRows-1)
            {
                hY = maxBorderY+3-iniY;
                if(hY<=0)
                    continue;
            }

            float hX = cellW + 6;

            for(int j=0; j<levelCols; j++)
            {
                float iniX;

                if(i==0)
                {
                    iniX = minBorderX + j*cellW - 3;
                    iniXCol[j] = iniX;
                }
                else
                {
                    iniX = iniXCol[j];
                }


                if(j == levelCols-1)
                {
                    hX = maxBorderX+3-iniX;
                    if(hX<=0)
                        continue;
                }


                Mat cellImage = mvImagePyramid[level].rowRange(iniY,iniY+hY).colRange(iniX,iniX+hX);

                cellKeyPoints[i][j].reserve(nfeaturesCell*5);

                FAST(cellImage,cellKeyPoints[i][j],iniThFAST,true);

                if(cellKeyPoints[i][j].size()<=3)
                {
                    cellKeyPoints[i][j].clear();

                    FAST(cellImage,cellKeyPoints[i][j],minThFAST,true);
                }


                const int nKeys = cellKeyPoints[i][j].size();
                nTotal[i][j] = nKeys;

                if(nKeys>nfeaturesCell)
                {
                    nToRetain[i][j] = nfeaturesCell;
                    bNoMore[i][j] = false;
                }
                else
                {
                    nToRetain[i][j] = nKeys;
                    nToDistribute += nfeaturesCell-nKeys;
                    bNoMore[i][j] = true;
                    nNoMore++;
                }

            }
        }


        // Retain by score

        while(nToDistribute>0 && nNoMore<nCells)
        {
            int nNewFeaturesCell = nfeaturesCell + ceil((float)nToDistribute/(nCells-nNoMore));
            nToDistribute = 0;

            for(int i=0; i<levelRows; i++)
            {
                for(int j=0; j<levelCols; j++)
                {
                    if(!bNoMore[i][j])
                    {
                        if(nTotal[i][j]>nNewFeaturesCell)
                        {
                            nToRetain[i][j] = nNewFeaturesCell;
                            bNoMore[i][j] = false;
                        }
                        else
                        {
                            nToRetain[i][j] = nTotal[i][j];
                            nToDistribute += nNewFeaturesCell-nTotal[i][j];
                            bNoMore[i][j] = true;
                            nNoMore++;
                        }
                    }
                }
            }
        }

        vector<KeyPoint> & keypoints = allKeypoints[level];
        keypoints.reserve(nDesiredFeatures*2);

        const int scaledPatchSize = PATCH_SIZE*mvScaleFactor[level];

        // Retain by score and transform coordinates
        for(int i=0; i<levelRows; i++)
        {
            for(int j=0; j<levelCols; j++)
            {
                vector<KeyPoint> &keysCell = cellKeyPoints[i][j];
                KeyPointsFilter::retainBest(keysCell,nToRetain[i][j]);
                if((int)keysCell.size()>nToRetain[i][j])
                    keysCell.resize(nToRetain[i][j]);


                for(size_t k=0, kend=keysCell.size(); k<kend; k++)
                {
                    keysCell[k].pt.x+=iniXCol[j];
                    keysCell[k].pt.y+=iniYRow[i];
                    keysCell[k].octave=level;
                    keysCell[k].size = scaledPatchSize;
                    keypoints.push_back(keysCell[k]);
                }
            }
        }

        if((int)keypoints.size()>nDesiredFeatures)
        {
            KeyPointsFilter::retainBest(keypoints,nDesiredFeatures);
            keypoints.resize(nDesiredFeatures);
        }
    }

    // and compute orientations
    for (int level = 0; level < nlevels; ++level)
        computeOrientation(mvImagePyramid[level], allKeypoints[level], umax);
}

static void computeDescriptors(const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors,
                               const vector<Point>& pattern)
{
    descriptors = Mat::zeros((int)keypoints.size(), 32, CV_8UC1);

    for (size_t i = 0; i < keypoints.size(); i++)
        computeOrbDescriptor(keypoints[i], image, &pattern[0], descriptors.ptr((int)i));
}

void ORBextractor::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _keypoints,
                      OutputArray _descriptors)
{ 
    if(_image.empty())
        return;

    Mat image = _image.getMat();
    assert(image.type() == CV_8UC1 );

    // Pre-compute the scale pyramid
    // 构建图像金字塔(并包含边界EDGE_THRESHOLD)
    ComputePyramid(image);

    // 计算每层图像的兴趣点
    vector < vector<KeyPoint> > allKeypoints; // vector<vector<KeyPoint>>
    ComputeKeyPointsOctTree(allKeypoints);
    //ComputeKeyPointsOld(allKeypoints);

    Mat descriptors;

    int nkeypoints = 0;
    for (int level = 0; level < nlevels; ++level)
        nkeypoints += (int)allKeypoints[level].size();
    if( nkeypoints == 0 )
        _descriptors.release();
    else
    {
        _descriptors.create(nkeypoints, 32, CV_8U);
        descriptors = _descriptors.getMat();
    }

    _keypoints.clear();
    _keypoints.reserve(nkeypoints);

    int offset = 0;
    for (int level = 0; level < nlevels; ++level)
    {
        vector<KeyPoint>& keypoints = allKeypoints[level];
        int nkeypointsLevel = (int)keypoints.size();

        if(nkeypointsLevel==0)
            continue;

        // preprocess the resized image 对图像进行高斯模糊
        Mat workingMat = mvImagePyramid[level].clone();
        GaussianBlur(workingMat, workingMat, Size(7, 7), 2, 2, BORDER_REFLECT_101);

        // Compute the descriptors 计算描述子
        Mat desc = descriptors.rowRange(offset, offset + nkeypointsLevel);
        computeDescriptors(workingMat, keypoints, desc, pattern);

        offset += nkeypointsLevel;

        // Scale keypoint coordinates
        if (level != 0)
        {
            float scale = mvScaleFactor[level]; //getScale(level, firstLevel, scaleFactor);
            for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
                 keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
                keypoint->pt *= scale;
        }
        // And add the keypoints to the output
        _keypoints.insert(_keypoints.end(), keypoints.begin(), keypoints.end());
    }
}

/**
 * 构建图像金字塔(并包含边界EDGE_THRESHOLD)
 * @param image 输入图像
 */
void ORBextractor::ComputePyramid(cv::Mat image)
{
    for (int level = 0; level < nlevels; ++level)
    {
        float scale = mvInvScaleFactor[level];
        // 金字塔该层图像大小
        Size sz(cvRound((float)image.cols*scale), cvRound((float)image.rows*scale));
        // 包含边界后的图像大小
        Size wholeSize(sz.width + EDGE_THRESHOLD*2, sz.height + EDGE_THRESHOLD*2);
        Mat temp(wholeSize, image.type()), masktemp;
        mvImagePyramid[level] = temp(Rect(EDGE_THRESHOLD, EDGE_THRESHOLD, sz.width, sz.height));

        // Compute the resized image
        if( level != 0 )
        {
            resize(mvImagePyramid[level-1], mvImagePyramid[level], sz, 0, 0, cv::INTER_LINEAR);

            copyMakeBorder(mvImagePyramid[level], temp, EDGE_THRESHOLD, EDGE_THRESHOLD, EDGE_THRESHOLD, EDGE_THRESHOLD,
                           BORDER_REFLECT_101+BORDER_ISOLATED);            
        }
        else
        {
            copyMakeBorder(image, temp, EDGE_THRESHOLD, EDGE_THRESHOLD, EDGE_THRESHOLD, EDGE_THRESHOLD,
                           BORDER_REFLECT_101);            
        }
    }

}

} //namespace ORB_SLAM
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值