【数学建模|Python】规划问题之非线性规划

本文介绍了使用scipy.optimize.minimize解决非线性规划问题,通过多个例题详细讲解了如何设置目标函数、参数、约束条件,并强调了初值选择对局部最优解的影响。建议在求解时对不同初始值进行尝试以获取满意结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

预备知识

语法

scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)

参数(部分)

  • fun: 目标函数
  • x0:变量的初始值。如果有多个变量,则需要给每个变量一个初始值。
  • args:常数值,fun中一般没有数字,都以变量的形式表示,对于常数项及未知数前面的系数,需要以参数的形式传入
  • method:求极值的方法,一般使用默认为SLSQP
  • constraints:未知数的约束条件

API官方文档:https://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.optimize.minimize.html

例题 - 1

题目

计算1/x + x 的最小值

解答

先画出函数 1/x + x 的图像(区间:-10 ~+10)


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海轰Pro

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值