Pandas中GroupBy的用法与聚合函数的结合应用

本文介绍了Pandas库中GroupBy功能的使用,包括基本的单键分组,结合内置和自定义聚合函数,以及多键分组和对多列应用不同聚合函数。GroupBy提供了一种高效的数据处理方式,有助于深入分析数据结构和特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pandas是一个强大的数据分析工具,提供了大量的数据结构和数据分析工具,使得数据分析和处理变得更加高效和简单。其中,GroupBy是Pandas中非常常用的一个功能,它允许用户根据一个或多个键对数据进行分组,并对每个组执行某种形式的计算。

import pandas as pd  
  
# 创建一个示例DataFrame  
df = pd.DataFrame({  
    'A': ['zuo', 'zuo', 'beng', 'beng', 'bar'],  
    'B': ['one', 'one', 'two', 'two', 'one'],  
    'C': [1, 2, 3, 4, 5],  
    'D': [10, 20, 30, 40, 50]  
})  
  
# 根据列'A'进行分组  
grouped = df.groupby('A') 

 

上述代码会输出一个GroupBy对象,该对象包含了按列'A'分组后的数据。但此时并未执行任何计算,只是进行了分组。

二、结合聚合函数使用

GroupBy的真正强大之处在于它可以与各种聚合函数结合使用,对每个组执行计算。Pandas提供了许多常用的聚合函数,如sum、mean、count等,同时也可以自定义聚合函数。

  1. 使用内置聚合函数

    # 计算每个组的'C'列的和  
    result = grouped['C'].sum()  
    print(result)  
      
    # 计算每个组的'D'列的平均值  
    result = grouped['D'].mean()  
    print(result)
    
    
    上边是承接上个代码块的写法。
    我们也可以按如下方法写。
    
    # 计算每个组的'C'列的和  
    result = df.groupby('A') .sum()  
    print(result)  
      
    # 计算每个组的'D'列的平均值  
    result = df.groupby('A') .mean()  
    print(result)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值