Googlenet-v2

GoogLeNet-v2在GoogLeNet-v1基础上引入批标准化(BN)层,解决内部协变量偏移(ICS)问题,加速模型训练并提高精度。BN层能用更大学习率,替代精心初始化和dropout,成为深度学习标准化层的基础。论文实验显示,BN使模型训练速度提升,精度显著增加,在ILSVRC上表现优异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Googlenet-v2 (BN层的提出)

论文题目是: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift(批标准化:缓解内部协变量偏移加快深度神经网络训练

作者: Sergey Ioffe & Christian Szegedy(GoogLeNet-v1 一作)
单位: Google Inc.
发表时间: 2015年
本篇论文的主要trick:Batch Normalization

研究背景、成果和意义

相关研究:GoogLeNet –V1 采用多尺度卷积核,11卷积操作,辅助损失函数,实现更深的22层卷积神经网络,夺得ILSVRC-2014 分类和检测冠军,定位亚军。
本文在GoogLeNet-V1 基础上加入BN层,同时借鉴VGG的小卷积核思想,将5
5卷积替换为2个3*3卷积

ICS (Internal Covariate Shift):内部协变量偏移。
ICS现象:输入数据分布变化,导致的模型训练困难,对深度神经网络影响极大。如下图所示输入数据做不同的标准化,方差,均值不一样的分布。
在这里插入图片描述
在这里插入图片描述
白化(Whitening) 去除输入数据的冗余信息,使得数据特征之间相关性较低,所有特征具有相同方差,即将数据变为0均值,1标准差的形式,实现白化。
依据 是概率论公式:N(x)=x −mean/std,, 使X变为0均值,1标准差。mean-mean=0, std * 1/std = 1
区别: 白化是对数据做预处理,即在数据输入模型之前做处理,而BN层是在模型中对数据做处理。

成果:

  1. 提出BN层:加快模型收敛,比googlenet-v1快数十倍,获得更优结果
  2. GoogLeNet-v2 获得ILSVRC 分类任务 SOTA,但该论文没有参赛
    在这里插入图片描述
    BN 优点:
    1、可以用更大学习率,加速模型收敛
    2、 可以不用精心设计权值初始化
    3、 可以不用dropout或较小的dropout
    4、 可以不用L2或者较小的weight decay
    5、 可以不用LRN(local response normalization)

研究意义:
1、加速了深度学习发展
2、开启神经网络设计新时代,标准化层已经成为深度神经网络标配
在Batch Normalization基础上拓展出了一系例标准化网络层,如
Layer Normalization(LN),
Instance Normalization(IN),
Group Normalization(GN)
不同标准层之间的相同点与差别:
相同点:公式相同
在这里插入图片描述
不同点:均值和方差求取方式

摘要

摘要核心

  1. 提出问题:数据分布变化导致训练困难(PS:权重变化–输出变化–输入
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值