怎么对BI报表展开测试?

前言:BI报表测试是一项重要的测试内容,因为面对的使用群体一般是公司高层或者用户中的重要群体。出现问题影响较大,所以必须仔细且谨慎对待。本文根据自己之前的测试经验,结合其它相关资料,做个简单的总结汇总,如有其它建议,可以留言或者私聊,期待沟通交流。

一、测试过程拆解

针对BI报表测试,一般情况下,我们需要自己准备数据,来验证报表统计的准确性。由于系统的构成不一样,简单把报表测试过程分解为两个层次:数据收集汇总、数据统计展。

在做数据收集汇总验证时,我们需要了解数据从哪里来,如何汇总,数据入库的规则是什么,如何存放,在什么时间点进行汇总。把这些问题弄清楚了,才可以针对性的做测试策略,来验证数据入库的准确性。这步很重要,因为这个是报表测试的数据来源,如果这里的数据出错,后面的一切都没有意义。

针对数据统计展现,我们需要了解页面上展现的数据来源于库中的哪些表哪些字段,根据什么样的规则来统计。把所有需要展现的数据集对应清楚,这样才能有效的进行数据准备,验证前端的统计、展现是否有问题。可参考:模拟数据在实际场景中的应用

在实际的测试过程中,以上两个层次不要集中在一起去验证,以免链路过长,不好定位问题,最好分开来验证(可以由不同的人员并行测试),同时,在测试过程中,一定要保证数据的可控制性!!!在开发设计之初,我们就需要评估相关的测试数据制造时间,进行有针对性的准备。完成数据准备后,最好能够备份,以便在测试过程中随时还原数据,重现或者验证BUG。

二、BI报表测试策略

1、数据汇总测试策略

数据来源:

  1. 数据从哪些系统中收集。
  2. 通过什么方式进行收集(定时任务\接口筛选\数据库同步)。

数据入库:

  1. 数据源库与目标库的对应关系。
  2. 了解相关库的基本操作(MYSQL\HADOOP)。

数据验证:

  1. 明确数据入库的时间分片(按日?月?年?时?分)。
  2. 核对两边的数据,可以抽样验证,重点关注临界的数据。

2、测试数据准备

原始数据:

  1. 了解原始库的库表结构、数据分类。
  2. 了解本次报表展现的边界规则,对应的准备测试数据。
  3. 通过一定的手段生成数据并固定测试数据。

展现数据:

  1. 数据覆盖所有分类。
  2. 数据量需要足够多。
  3. 需要包含所有边界值(结合展现时的查询条件)。
  4. 数据中需要包含少量的非法数据,验证系统的容错性。

数据生成方式:

  1. 存储过程。
  2. 第三方工具(DataFactary等)。
  3. 通过业务生成数据(并不推荐)。
  4. 相关业务接口生成数据。

3、页面数据展现测试

数据的来源:

  1. 来源于哪张表,哪个字段。
  2. 数据库中的数值与界面数据的对应.如数据库中性别的数据可能是0或1,但界面显示为男或女,这个对应关系是否正确。

数据的范围:

  1. 是否只显示了报表设置的对应范围。
  2. 特别要注意边界数据,要清楚报表的需求,是否需要过滤掉被选择的数据.如时间选择为2021-6-1~2022-6-1,那么是否应该包含6-1这天。

数据的对应关系:

  1. 数据库中的字段是否与报表中的信息对应。

数据的格式:

  1. 小数位,千位符,四舍五入等是否与报表设置一致。
  2. 单位或税率转换是否正确。
  3. 组合显示的数据是否合理。

数据的排序:

  1. 排序方式是否与报表设置一致(如果没有设置,是否有一个清晰的默认排序方式,如按字母或数字排序)。

数据准确性:

  1. 对于各种分类统计,首先验证数据总量是否一致,其次验证各类数据的总和是否一致,特别注意四舍五入对数据的影响。
  2. 所登录的用户是否能查看到全量的数据,还是部分数据,部分数据的统计是否正确。

测试这一部分内容需要对业务逻辑相当熟悉,对数据库的设计也要非常了解.必要时可以通过自己写查询语句查看数据.有些报表的条件有多有少,但测试方法都是一样.根据条件通过等价类划分和排列组合设置各种条件组合.千万不要盲目的测试,否则会导致该测的没测,多余的测试做了一堆.一般来说有类别划分的(一般界面表现为下拉框),每个类别都要测试到,如性别中的男,女都要测试.输入的可以用等价类来划分要测试的数据。

4、页面UI测试

报表的整体风格:

  1. 报表是否符合规定的或用户设置的格式。

报表标题:

  1. 报表的标题是否是正确的报表名称。
  2. 如报表中有嵌入的数据(会跟随用户的选择而变化的).需要检查数据是否正确,如XX企业6月份财务报表,这个6月就是用户选择的;或者XX公司2021-6-1~2022-6-1的网站访问量,这个时间段也是用户选择的。
  3. 报表的页首与页尾:是否采用了一致的规则。
  4. 分页:当输出的内容多时,分页是否正确,翻页功能是否正确。

友好性:

  1. 数据或图表是否清晰,一目了然。
  2. 数据的展示符合用户的习惯。
  3. 需要特别提醒的数据(如合计,异常数据)是否突出显示。
  4. 复杂算法处,用户不明白或容易混淆处是否有注释。
  5. 一些默认的格式是否让人感觉舒服,如对齐,边界,间隔等。

5、数据权限控制

报表系统权限控制等级:比如:按钮级(权限不够某个按钮就不能用);菜单级(权限不够某个菜单就不能用);页面级(比如用tab方式展示页面,没有权限则某个页面就不展现)。

参与人员涉及到的权限:一般以角色区分,这里详细列出各个角色允许的权限,便于后继针对性检查。

数据权限:在条件选择区域,有些下拉框中应该不能显示用户权限范围外的数据.如普通人员在使用报表时,报表名称下拉框中是不可以显示管理者才能查看的报表的.注意这里一定要测试每个条目。

数据内容:报表中的内容不能显示用户本没有权限查看的数据。

6、报表输出

报表在电脑上生成后,并不是报表的结束.报表一般都需要打印出来以做它用,如开会或者提交审批之类.所以报表的打印功能也是非常重要的.测试主要分成三部分:打印设置、打印预览、实际打印效果。

除了打印之外,用户有可能需要导出报表做进一步的分析或用于和其他报表的比较.所以也应该提供导出报表的功能.一般可以导出为CSV,Excel,pdf,html,xml格式.看公司需要了.这里主要要检查导出的报表默认属性是否为读写,然后导出的内容是否正确,与生成的报表相一致

7、报表性能

用户在设置好条件后都希望不要等待报表太长时间,当然有时数据量大时等待时间长些也是合理的.但是在做报表的开发时或测试人员可以提出一些意思来提高报表的性能.可以走查开发的SQL代码、必要的时候可以通过视图来提高性能。

三、结语

报表测试相比于其它的日常功能测试,有它的特殊性,故需要有针对性的测试方案。它又区别于我们所说的大数据测试(一般的场景下数据量还达不到“大数据”的量级)。以上的总结希望可以做一些沉淀,也欢迎大家一起交流。

<think>好的,用户现在想了解报表测试的关键点和最佳实践。首先,我需要回忆一下之前用户提到的引用内容,看看有哪些相关的信息可以借鉴。用户之前提供的引用[1]提到,进销存系统的报表非常多,不同行业的报表有差异,但总结了一些通用的最佳实践。引用[2]和[3]分别涉及性能测试和数据清洗,可能和报表测试中的性能和数据准确性有关。 首先,我需要确定用户的需求是报表测试的关键点和最佳实践,所以需要围绕这两个方面来组织答案。关键点可能包括数据准确性、业务逻辑验证、性能测试、界面展示等。最佳实践方面,引用[1]提到了十几条经验,比如边界值测试、权限验证、压力测试等。 接下来,我需要结合自己的知识和引用内容来展开。例如,数据准确性是报表的核心,需要验证数据源、计算逻辑、数据完整性。这时候可以引用[3]提到的数据清洗和质量控制,说明数据中台如何帮助提升数据质量。性能测试方面,引用[2]提到了全链路压测和测试环境的重要性,这部分可以融入报表的性能测试实践中。 另外,用户可能没有明确提到但需要考虑的方面包括权限控制、多环境验证、版本兼容性等。比如不同角色的用户访问报表的权限不同,需要测试权限设置是否正确,这可以结合引用[1]中的权限验证部分。 还需要注意用户提到的“最佳实践”,因此需要将这些关键点转化为具体的实践步骤,比如如何设计测试用例,如何模拟真实数据,如何自动化测试等。同时,引用[1]中的边界值测试、异常数据测试等方法都是具体的实践,需要详细说明。 可能用户的实际场景是不同行业的报表测试,所以需要强调通用性,但也要提醒用户注意行业特定需求。比如进销存系统和金融报表可能有不同的业务规则,测试时需要结合具体业务逻辑。 最后,要确保回答结构清晰,分点列出关键点和最佳实践,每个部分都给出具体的方法和示例,并适当引用提供的资料来增强可信度。同时,用户可能需要相关问题来深入探讨,所以需要生成几个相关的问题,比如如何验证大数据报表的性能,或者如何处理多数据源的情况。</think>### 报表测试的关键点与最佳实践 #### **一、关键测试方向** 1. **数据准确性验证** - **数据源核对**:比对报表数据与原始数据库/业务系统数据的一致性,确保数据抽取逻辑正确(如时间范围、字段映射)[^3]。 - **计算逻辑验证**:检查聚合函数(如$SUM()$、$AVG()$)、公式(如利润率$= \frac{\text{利润}}{\text{收入}} \times 100\%$)是否与业务规则一致。 - **数据完整性**:验证分页、筛选条件下的数据总量是否匹配(如分页总数$= \lceil \frac{\text{总记录数}}{\text{每页条数}} \rceil$)。 2. **业务逻辑覆盖** - 根据行业特性设计场景(如零售业需验证促销期间的销售额环比增长率$= \frac{\text{本期销量 - 上期销量}}{\text{上期销量}} \times 100\%$)。 - 测试边界值:例如库存报表中“零库存”商品是否显示、负值金额的异常处理。 3. **性能与稳定性** - 响应时间:单用户查询$<3$秒,高并发(如100用户同时操作)下系统不崩溃[^2]。 - 大数据测试:生成百万级数据验证分页加载效率,避免内存溢出。 4. **界面与展示规范** - 格式一致性:日期格式(YYYY-MM-DD)、金额千分位分隔符(如$1,234.56$)。 - 可视化校验:图表轴标签、颜色编码是否符合业务语义。 --- #### **二、最佳实践方法** 1. **分层测试策略** - **单元级**:直接验证SQL语句或数据处理脚本,例如: ```sql SELECT SUM(revenue) FROM sales WHERE date BETWEEN '2023-01-01' AND '2023-12-31' ``` - **集成级**:模拟ETL流程,检查数据清洗规则(如去重、空值填充)[^3]。 - **系统级**:端到端测试报表生成、导出(PDF/Excel)、打印功能。 2. **自动化测试覆盖** - 使用工具(如JasperReports、Power BI测试框架)自动比对预期与实际数据。 - 脚本化性能压测(如JMeter模拟并发请求)[^2]。 3. **真实数据模拟** - 构造包含异常值的数据集(如负数库存、超长文本字段)。 - 使用生产环境数据脱敏后复现问题场景。 4. **权限与安全测试** - 验证角色权限隔离(如销售员仅能看到本区域数据)。 - 防止SQL注入:输入`' OR 1=1 --`等攻击字符串测试报表接口。 --- #### **三、常见陷阱与规避** | 风险场景 | 解决方案 | |-------------------------|---------------------------| | 时区不一致导致日期错误 | 统一使用UTC时间存储和计算 | | 缓存机制干扰实时数据 | 测试时强制清除缓存 | | 多数据源关联错误 | 逐层验证JOIN逻辑 | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值