线性代数学习笔记——矩阵

本文详细探讨了线性代数中的核心概念——矩阵,包括矩阵的定义、初等行变换、阶梯型矩阵、可逆矩阵、分块矩阵、矩阵的秩和初等矩阵等相关性质。通过矩阵理论,解析了线性方程组的求解方法,如Cramer法则和Gauss消元法,为理解线性系统提供了基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.引出

在利用Gauss消元法求解线性方程组的过程中,参与运算的只是其中的系数和常数项,将这些系数和常数项写成"表格"的形式来表示求解的过程,于是引入矩阵的概念。

2.定义

矩阵及其初等行变换

 ①矩阵

(a11a12⋯a1na21a22⋯a2n⋮⋮⋮⋮as1as2⋯asn)(1) \left( \begin{matrix} a11 &a12 &\cdots &a1n \\ a21 &a22 &\cdots &a2n \\ \vdots &\vdots &\vdots &\vdots \\ as1 &as2 &\cdots &asn \end{matrix} \right)\tag{1} a11a21as1a12a22as2a1na2nasn(1)

  • aij称为矩阵的元素。元素为实数的矩阵称为实矩阵,元素为复数的矩阵称为复矩阵。如果s=n,则(1)式中的矩阵称为n阶矩阵n阶方阵
  • 两个矩阵完全相同时(行数相同,列数相同,对应元素相同),称他们相等
  • 两个或两个以上矩阵,行数相同,列数相同,称它们为同型矩阵

 ②初等行变换

 对矩阵所作的下述变换称为矩阵的初等行变换

  • 互换矩阵两行的位置
  • 用一不等于零的数乘以矩阵某行的所有元素
  • 将矩阵的一行换成该行与另一行的同一个倍数之和

阶梯型矩阵

 如果矩阵A满足下述两个条件,则称A是阶梯型矩阵:

  • 如果A有零行(每个元素都等于零的行),则零行全位于A的下方
  • A的每个非零行的非零首元(从左往右第一个不为零的数)必位于上一行的非零首元的右边

 如果阶梯型矩阵A还满足下面两个条件,则称A是简化阶梯型矩阵:

  • A的每个非零首元都等于1
  • 除了非零首元外,非零首元所在列的其余元素都等于零

可逆矩阵

 ①行列式的乘法定理

 设A,B都是n阶方阵,则∣AB∣=∣A∣∣B∣|AB| = |A||B|AB=AB

 ②可逆矩阵

 设A是n阶方阵。若存在n阶矩阵B,使得
AB=BA=E AB = BA = E AB=BA=E

则称A是可逆的,称B是A的可逆矩阵

 ③伴随矩阵

 设n ≥ 2。n阶方阵A = (aij)nxn。记Aij是A中第i行第j列元素aij的代数余子式。则称矩阵
(A11A21⋯An1A12A22⋯An2⋮⋮⋮⋮A1nA2n⋯Ann)(2) \left( \begin{matrix} A11 &A21 &\cdots &An1 \\ A12 &A22 &\cdots &An2 \\ \vdots &\vdots &\vdots &\vdots \\ A1n &A2n &\cdots &Ann \end{matrix} \right)\tag{2} A11A12A1nA21A22A2nAn1An2Ann(2)
为A的伴随矩阵,并用符号A*表示
注意,在上面的定义中,Aij不是aij的余子式,而是aij的代数余子式。而且,A*中的第i行第j列元素不是Aij,而是Aji

分块矩阵

 ①矩阵加减法分块原则

 设A,B都是mxn矩阵,只要两个矩阵的行和列的分块方式完全一致即可。

 ②矩阵数乘分块原则

 矩阵分块并无特殊要求,用数乘以矩阵的每一个分块。

 ③矩阵乘法分块原则

 设A是mxn矩阵,B是nxk矩阵,只要矩阵A的列的分块与矩阵B的行的分块完全一致,不管A的行与B的列如何分。

 ④矩阵转置的分块原则

 设A是mxn矩阵,对A的任意分块方式,均有
A=(A11A12⋯A1tA21A22⋯A2t⋮⋮⋮⋮As1As2⋯Ast),AT=(A11TA21T⋯As1TA12TA22T⋯As2T⋮⋮⋮⋮A1tTA2tT⋯AstT), A= \left( \begin{matrix} A_{11} &A_{12} &\cdots &A_{1t} \\ A_{21} &A_{22} &\cdots &A_{2t} \\ \vdots &\vdots &\vdots &\vdots \\ A_{s1} &A_{s2} &\cdots &A_{st} \end{matrix} \right), A^T= \left( \begin{matrix} A_{11} ^T&A_{21}^T &\cdots &A_{s1}^T \\ A_{12}^T &A_{22}^T &\cdots &A_{s2}^T \\ \vdots &\vdots &\vdots &\vdots \\ A_{1t}^T &A_{2t}^T &\cdots &A_{st}^T \end{matrix} \right), A=A11A21As1A12</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值