嘿,记得给“机器学习与推荐算法”添加星标
深度学习技术已经在计算机视觉以及自然语言理解等领域取得了巨大的成功,受其影响深度学习研究也开始在推荐系统领域得到关注。近些年来,已经见证了基于神经网络的推荐系统的巨大进步,其已经超越了传统推荐模型的性能。不同于之前文献[1][2]基于深度模型的结构进行综述(比如以MLP、CNN、RNN等进行分类),也不同于之前文献对于某一子领域进行综述[3][4](比如跨域推荐、知识图谱推荐等),本文以推荐模型的准确性为目标,从推荐模型的角度对神经推荐模型进行了系统的综述,旨在总结该领域的研究成果,为研究推荐系统的研究者和实践者提供参考。具体来说,根据推荐模型建模所利用的数据进行分类,把当前的工作分为了基于协同过滤的方法和基于信息增强的方法。另外,把基于信息增强的方法又进一步分为了内容增强的方法和基于时序/序列的推荐方法,下文将对上述方法进行详细介绍。
论文:https://arxiv.org/pdf/2104.13030
论文合集:github.com/hongleizhang/RSPapers
论文集合:github.com/lmcRS/AWS-recommendat