AI人工智能大模型讲师叶梓简历及《基于人工智能的内容生成(AIGC)理论与实践》培训提纲

本文介绍上海交通大学计算机博士叶梓在人工智能领域的丰富经验,包括数据挖掘、机器学习等技术的研究和应用,以及ChatGPT模型的实践案例分析。课程覆盖Transformer、自注意力机制、GPT系列发展及应用领域,适合对ChatGPT感兴趣的学习者入门和进阶。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

叶梓,上海交通大学计算机专业博士毕业,高级工程师。主研方向:数据挖掘、机器学习、人工智能。历任国内知名上市IT企业的AI技术总监、资深技术专家,市级行业大数据平台技术负责人。

长期负责城市信息化智能平台的建设工作,开展行业数据的智能化应用研发工作,牵头多个省级、市级行业智能化信息系统的建设,主持设计并搭建多个省级、市级行业大数据平台。参与国家级人工智能课题,牵头上海市级人工智能示范应用课题研究。

带领团队在相关行业领域研发多款人工智能创新产品,成功落地多项大数据、人工智能前沿项目,其中信息化智能平台项目曾荣获:“上海市信息技术优秀应用成果奖”。带领团队在参加国际NLP算法大赛,获得Top1%的成绩。参与国家级、省级大数据技术标准的制定,曾获省部级以上的科技创新一等奖。

【课程简介】

本课程介绍了chatGPT相关模型的具体案例实践,通过实操更好的掌握chatGPT的概念与应用场景,可以作为chatGPT领域学习者的入门到进阶级课程。

【课程时长】

1天(6小时/天)

【课程对象】

理工科本科及以上,且至少了解一门编程语言。

【课程大纲】(培训内容可根据客户需求调整)

时间

内容

案例实践与练习

Day1上午

Transformer

1、你需要的仅仅是“注意力”

2、Transformer中的block

3、自注意力机制

4、多头注意力

5、位置编码(抛弃RNN)

6、Batch Norm与Layer Norm

7、解码器的构造

初代GPT

  1. “独角兽”的威力
  2. GPT的内部架构
  3. 基于Transformer的改造
  4. 自注意力机制的改进

Day1下午

GPT的演进

1、GPT2

2、GPT3

3、InstructGPT

chatGPT的原理实践

1、指示学习(Instruct Learning)

2、相关数据集

3、有监督微调(SFT)

4、从人类反馈中RL的思路

5、奖励建模(RM)

6、PPO

7、chatGPT的应用领域

8、chatGPT引发的讨论

chatGPT的国内替代品

1、问东风AI

2、其他替代品

### 信息化时代AI讲师的发展趋势职业路径 #### AI讲师的职业定位发展前景 在信息化快速发展的背景下,AI讲师成为连接理论知识实际应用的重要桥梁。他们不仅需要具备扎实的技术基础,还需要拥有良好的教学能力和行业洞察力。根据对Google的AI人才培养体系的研究[^1],AI讲师的核心职责在于通过系统化的课程设计和教学方法,帮助学员掌握AI技术的基础知识以及工程实践能力。 此外,AI讲师通常由具有深厚学术背景和技术实践经验的人士担任。例如,叶梓作为一名上海交通大学计算机专业的博士毕业生,其研究方向涵盖了数据挖掘、机器学习等领域,并积累了丰富的项目管理经验[^2]。这种复合型人才正是当前市场上紧缺的教育资源之一。 #### 职业发展路径 AI讲师的职业发展路径可以从以下几个维度展开: 1. **专业化提升** 随着AI技术不断演进,AI讲师需持续更新自己的专业知识库。这包括但不限于最新的算法模型、编程语言(如Python)、深度学习框架(如TensorFlow、PyTorch)以及其他前沿技术的应用实例。同时,熟悉特定领域的应用场景(如医疗健康、金融风控等),有助于增强授课内容的相关性和实用性。 2. **教育模式创新** 当前在线教育平台蓬勃发展,为AI讲师提供了更广阔的舞台。利用多媒体工具制作高质量的教学视频、编写互动性强的学习材料,甚至开发专属的训练营或认证课程,都是可行的方向。这些举措不仅能扩大受众范围,还能提高个人品牌影响力。 3. **跨领域融合** 结合其他学科的知识拓展教学范畴也是重要的发展方向。比如将心理学原理融入到用户体验优化中讲解推荐系统的设计思路;或者借助经济学思维来剖析企业如何运用预测模型实现成本节约等问题。此类跨界尝试往往能激发学生更大的兴趣并促进深层次理解。 4. **参标准化制定** 对于资深从业者而言,还可以参到各类国家标准或国际协议的起草工作中去。正如文中提到的一位专家曾主导过多项信息化工程建设指南编制工作一样[^2],这样的经历既是对自身权威性的认可也为其后续事业发展奠定了坚实基础。 5. **向研发端转型** 如果希望进一步深耕技术层面,则可以选择转向产品研发岗位。特别是对于那些擅长解决复杂问题并对质量有着极高追求的人来说,“AI测试框架开发者”的角色或许是一个不错的选择[^3]。这类职位要求候选人不仅要精通传统意义上的软件测试流程,还要能够针对新型智能化解决方案实施全面而细致的功能验证及性能评估。 --- ```python # 示例代码:简单的线性回归演示 import numpy as np from sklearn.linear_model import LinearRegression X = np.array([[1], [2], [3]]) y = np.array([2, 4, 6]) model = LinearRegression() model.fit(X, y) print(f"斜率: {model.coef_[0]} 截距: {model.intercept_}") ``` 上述代码片段展示了基本的机器学习建模过程,可供初学者直观感受AI的实际操作方式。 --- #### 总结 综上所述,在信息化浪潮席卷全球的大环境下,AI讲师面临着前所未有的机遇挑战。只有紧跟科技潮流、不断提升自我价值才能在这条充满活力的职业道路上越走越远。 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能大模型讲师培训咨询叶梓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值