想要掌握如何将大模型的力量发挥到极致吗?叶梓老师带您深入了解 Llama Factory —— 一款革命性的大模型微调工具(限时免费)。
1小时实战课程,您将学习到如何轻松上手并有效利用 Llama Factory 来微调您的模型,以发挥其最大潜力。
CSDN教学平台录播地址:https://edu.csdn.net/course/detail/39987
想快速掌握自动编程技术吗?叶老师专业培训来啦!这里用Cline把自然语言变代码,再靠DeepSeek生成逻辑严谨、注释清晰的优质代码。4月12日,叶梓老师将在视频号上直播分享《用deepseek实现自动编程》。
视频号(直播分享):sphuYAMr0pGTk27 抖音号:44185842659
最强多模态模型Llama 4开源,采用混合专家架构,计算效率更高,性能显著提升。Llama 4 Scout支持1000万上下文,可在单个H100 GPU上运行,处理长文本、视频等更加高效。Llama 4 Maverick在多个基准测试中击败GPT-4o等模型,推理和编码能力强大,性价比极高。Llama 4原生支持多模态,能处理文本、图像、视频等多种数据,为AI应用开发带来无限可能。
Llama 4 采用了早期融合(early fusion)架构,能够将文本、图像和视频帧视为单一的标记序列进行联合处理。这种创新设计使得模型在处理图文结合任务时表现出色,例如分析包含图表的文档或回答涉及视频字幕和视觉内容的问题。对于企业用户而言,这意味着 AI 助手可以处理完整的报告(文本 + 图形 + 视频片段),并提供整合的摘要或答案。
多模态推理:文字与图像的无缝融合
Llama 4 在训练过程中采用了监督微调(SFT)和直接偏好优化(DPO)等方法,这些技术有助于模型更好地理解和生成图文结合的内容。通过精心设计的课程策略,Llama 4 能够在不降低单一模态专家模型性能的情况下,平衡多种输入模态、推理和对话能力。这种优化策略不仅提升了模型在多模态任务中的表现,还使其在推理、编码和数学领域取得了显著的性能提升。
文本与图像交错微调:提升模型理解力
Llama 4 首次引入了混合专家(MoE)架构,通过只激活与输入数据最相关的专家子模型,提高了模型的计算效率。例如,Llama 4 Maverick 模型拥有 170 亿活跃参数和 4000 亿总参数,通过 128 个专家进行路由。这种架构不仅降低了模型的推理成本和延迟,还提高了模型的可扩展性,使其能够在生产环境中高效部署。
混合专家架构:高效与扩展性的完美结合
Llama 4 Scout 模型具有行业领先的 1000 万标记的上下文窗口,这使得它能够处理非常长的上下文,例如总结大型代码库或分析长篇文档。这种能力对于需要处理大量信息的任务至关重要,例如多文档总结、个性化任务分析和复杂代码库推理。
超长上下文窗口:处理海量信息的能力
在实际应用中,Llama 4 的多模态能力和超长上下文窗口为各种任务提供了强大的支持。例如,Llama 4 Scout 能够分析企业 SharePoint 库中的所有文档,以回答特定查询,或者阅读多千页的技术手册以提供故障排除建议。此外,Llama 4 在多个基准测试中表现出色,超越了包括 GPT-4o 和 Gemini 2.0 Flash 在内的多个竞争对手。
https://www.llama.com/llama-downloads/