大数据人工智能培训讲师老师:叶梓简介 人工智能讲师ai讲师大数据讲师人工智能老师

上海交通大学计算机专业博士毕业,在校期间的主研方向为数据挖掘、机器学习、人工智能。毕业后即进入某大型软件上市公司从事大数据、人工智能等技术相关工作,曾先后作为技术经理或总工程师,负责大型信息平台、市级信息平台的建设工作,并参与省级信息平台的建设;主持制定了包括多份信息化工程标准。在大数据应用、人工智能等方面都有着丰富的经验。个人助理QQ:526346584

案例及课程:

主要课程:

  • 《数据分析与数据挖掘导论》
  • 《机器学习与深度学习》
  • 《基于深度学习的计算机视觉》
  • 《强化学习与深度强化学习》
  • 《强化学习》
  • 《大数据》

人工智能咨询项目案例:

人工智能实践方案 人工智能环保《生化池污水池处理》项目案例技术路线详解:

  • 需求要点
    1. 客户提供生化池曝气图片作为训练样本,图片需根据生化池曝气情况划分为优良、中、差三级等级曝气质量(目前优良类图片比较充足,中、差等级的样本量不足);
    2. 算法需具备自学习功能,可先行根据客户提供生化池不同等级曝气质量图片进行自学习,后续将根据其他样品图片验证其算法正确性;
    3. 等级“优良”是指曝气比较均匀,存在较多气泡,且气泡相对均匀地分布在水面各处;等级“差”是指水面气泡很少,或几乎没有气泡;等级“中”是介于两者之间的情况(暂未有具体示例)。
    4. 客户可对软件所识别图片曝气质量等级进行修正,并将结果反馈给软件系统,可对算法进行持续优化。
  • 技术路径概述
    1. 人工智能水面区域定位。由于图片角度和视域的关系,图片中水面区域所处的位置、形状都是不确定的,(如:左图水面区域为中部及右下方近似的五边形;右图水面区域为下部的近似五边形);为了分析水面上的气泡,必须先自动识别出水面区域。

  

    1. 人工智能计算机视觉区分气泡与泥浆。直观的看,气泡是水面上色彩接近白色的区域;泥浆是水面上色彩接近褐色的区域。但由于光照的影响,客户提供的图片中的气泡和泥浆的色彩都会有比较大的偏差:

选自图片3                     选自图片19

在图片3中,气泡的色彩范围大约是(180~225,180~225,180~225);泥浆的色彩范围大约是(165~200,165~200,165~200);色彩范围有重叠,且整体色调偏灰(RGB三者接近相等)。

在图片19中,气泡的色彩范围大约是(115~150,100~130,70~110);泥浆的色彩范围大约是(60~110,45~100,30~75),也有重叠,且整体色调偏褐,相对于图3,本图整体亮度都要低一些。

因此,用统一的人工智能算法兼顾两者是关键,必须采用更具“鲁棒性”的方法来区分气泡和泥浆。

    1. 气泡存在性分析。当气泡不存在或极少时,上述基于色彩阈值或色差对比的算法就可能失效,还需要依靠与色彩无关的形态学特征来识别是否有气泡。

几乎无气泡的场景——选自图片25

    1. 采用人工智能的方法气泡均匀性分析。样本量比较少时的初步方法是,先根据色彩、色差或形态学特征来发现气泡区域,再计算气泡的比例;然后将水面区域划分成若干小块,分别计算相关比例,并计算其分布的均匀性。当样本量积累到一定量级时,可利用深度学习等算法采用“无先验特征提取”的方式直接给出“均匀等级”的标签。
  • 关键技术点
    1. 人工智能图像分割用于区分泥浆区域和气泡区域。其基本原理是:根据图像的灰度、颜色、结构、形态等特征将图像分割成若干个互不交叠的区域。一般有三种方法:1、基于阈值分割方法:其中阈值是指图像的灰度特征;2、基于边缘的分割方法,图像边缘指的是图像中不同区域边界上连续像素点的集合,是图像局部特征不连续的体现;3、基于区域生长的分割方法,根据同一物体区域内象素的相似性质来聚集象素点。
    2. 利用人工智能CLAHE实现泥浆和气泡对比度调整。如果图像中泥浆和气泡的灰度值在一个过于狭窄范围内聚集,则难以直接通过前述方法区分两者,图像的直接观感就是对比度弱。CLAHE的基本思想就是把直方图均匀地延展到整个分布域内,用于增加图像的对比度。但对于一幅图像而言,不同区域的对比度可能差别很大,如果采用单一的直方图来对其进行调整显然并非最佳选择,应采用基于分块处理的思想自适应的直方图均衡算法。
    3. 通过人工智能HOG描述气泡的形态学特征。方向梯度直方图(HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。其主要思想是:在一副图像中,局部目标的表象和形态能够被梯度或边缘的方向密度分布很好地描述。具体的实现方法是:首先将图像分成小的连通区域(称之为细胞单元),然后采集细胞单元中各像素点的梯度的或边缘的方向直方图,最后把这些直方图组合起来就可以构成特征描述器。
    4. 基于人工智能深度学习直接给出曝气质量等级。深度学习是近十年来AI领域取得的最重要突破,它在NLP、CV、DIP等领域的应用都取得了巨大成功。现有的深度学习模型都属于神经网络的拓展,它与传统模式识别方法的最大不同在于它所采用的特征是从大数据中自动学习得到,而非采用手工设计。(由于缺乏足够的“中、差”等级样本,该算法暂时不能进行验证效果)。

  • 验证效果
  1. 直接根据基本的人工智能阈值方案对水面进行二值化分割的效果。

  1. 在上图中,累计图水面白色区域和黑色区域并计算比例,即获得初步的气泡占比。

(气泡较多的)红色框内区域面积:400*600;气泡占比:34.39%;

(气泡较多的)绿色框内区域面积:400*500;气泡占比:40.63%;

作为对比:

(气泡很少的)蓝色框内区域面积:400*500;气泡占比:0.7%

  1. 用人工智能CLAHE处理后,提升图像的对比度效果。

原图的RBG分量(图22)

经过CLAHE处理后的RBG分量(图22)

CLAHE前后灰度频谱的差异

  1. 基于色彩无关的形态特征提取效果。其中左图是对图8的处理结果,右图是对图22的处理结果。

  1. 用灰度图的HOG特征匹配的方法,根据人工智能训练样本特征自动进行水面区域的粗粒度识别的效果。

全局图

局部图  人工智能AI案例

### 信息化时代AI讲师的发展趋势与职业路径 #### AI讲师的职业定位与发展前景 在信息化快速发展的背景下,AI讲师成为连接理论知识与实际应用的重要桥梁。他们不仅需要具备扎实的技术基础,还需要拥有良好的教学能力和行业洞察力。根据对Google的AI人才培养体系的研究[^1],AI讲师的核心职责在于通过系统化的课程设计和教学方法,帮助学员掌握AI技术的基础知识以及工程实践能力。 此外,AI讲师通常由具有深厚学术背景和技术实践经验的人士担任。例如,叶梓作为一名上海交通大学计算机专业的博士毕业生,其研究方向涵盖了数据挖掘、机器学习等领域,并积累了丰富的项目管理经验[^2]。这种复合型人才正是当前市场上紧缺的教育资源之一。 #### 职业发展路径 AI讲师的职业发展路径可以从以下几个维度展开: 1. **专业化提升** 随着AI技术不断演进,AI讲师需持续更新自己的专业知识库。这包括但不限于最新的算法模型、编程语言(如Python)、深度学习框架(如TensorFlow、PyTorch)以及其他前沿技术的应用实例。同时,熟悉特定领域的应用场景(如医疗健康、金融风控等),有助于增强授课内容的相关性和实用性。 2. **教育模式创新** 当前在线教育平台蓬勃发展,为AI讲师提供了更广阔的舞台。利用多媒体工具制作高质量的教学视频、编写互动性强的学习材料,甚至开发专属的训练营或认证课程,都是可行的方向。这些举措不仅能扩大受众范围,还能提高个人品牌影响力。 3. **跨领域融合** 结合其他学科的知识拓展教学范畴也是重要的发展方向。比如将心理学原理融入到用户体验优化中解推荐系统的设计思路;或者借助经济学思维来剖析企业如何运用预测模型实现成本节约等问题。此类跨界尝试往往能激发学生更大的兴趣并促进深层次理解。 4. **参与标准化制定** 对于资深从业者而言,还可以参与到各类国家标准或国际协议的起草工作中去。正如文中提到的一位专家曾主导过多项信息化工程建设指南编制工作一样[^2],这样的经历既是对自身权威性的认可也为其后续事业发展奠定了坚实基础。 5. **向研发端转型** 如果希望进一步深耕技术层面,则可以选择转向产品研发岗位。特别是对于那些擅长解决复杂问题并对质量有着极高追求的人来说,“AI测试框架开发者”的角色或许是一个不错的选择[^3]。这类职位要求候选人不仅要精通传统意义上的软件测试流程,还要能够针对新型智能化解决方案实施全面而细致的功能验证及性能评估。 --- ```python # 示例代码:简单的线性回归演示 import numpy as np from sklearn.linear_model import LinearRegression X = np.array([[1], [2], [3]]) y = np.array([2, 4, 6]) model = LinearRegression() model.fit(X, y) print(f"斜率: {model.coef_[0]} 截距: {model.intercept_}") ``` 上述代码片段展示了基本的机器学习建模过程,可供初学者直观感受AI的实际操作方式。 --- #### 总结 综上所述,在信息化浪潮席卷全球的大环境下,AI讲师面临着前所未有的机遇与挑战。只有紧跟科技潮流、不断提升自我价值才能在这条充满活力的职业道路上越走越远。 相关问题
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能大模型讲师培训咨询叶梓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值