halcon中图像处理及图像滤波

图像滤波简介
图像滤波的方法主要分为两大类:空间域方法和频域方法。
空间域方法是以对图像的像素直接进行处理为基础,包括均值滤波、中值滤波、高斯滤波等;频域方法则是以修改图像在傅里叶变换空间的值为基础的,包括高通滤波、低通滤波、同态滤波等。
1.空间域图像滤波
图像空间域处理是指处理构成图像的每个像素,也就是直接对像素的值进行操作的过程。
基于空间的灰度图像滤波主要是借助一个模板图像对输入图像的一个邻域进行处理。根据他的功能不同可分为两大类:
(1)图像平滑处理:做法是对图像进行低通滤波,目的是模糊或消除图像中的噪声
(2)图像锐化处理:做法是对图像进行高通滤波,目的是增强被模糊的图像细节信息
无论是平滑还是锐化,都是利用模板卷积运算实现的。步骤如下:
(1)将模板在图像中滑动,并将模板中心与图中某个像素位置重合
(2)将模板上的系数与模板下对应的图像像素相乘
(3)将所有乘积相加
(4)将和赋值给图中对应模板中心位置的像素作为输出
2.均值滤波
均值滤波是一种线性平滑滤波。基本思想是用某像素邻域几个像素的平均值代替此像素原来的灰度值。
算子mean_image
由于图像中的所有像素都参与均值计算,因此如果噪声点很多,而且噪声的灰度值与原本的图像像素相差较大,例如椒盐噪声,则效果不理想。
重要应用:可以与动态阈值分割配合使用,处理光线不均匀图像的二值化。
3.高斯滤波
高斯滤波是用某像素邻域几个像素的加权平均值代替此像素的原有灰度值。
算子:gauss_filter
4.中值滤波
均值滤波和高斯滤波均属于邻域平均法,可以消除噪声,但同时会使图像变的模糊。
中值滤波属于统计滤波器的一种,统计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苏州大视通机器视觉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值