一共13道题,100分,120分钟
10道选择题(每题5分)
一开始排列组合,概率题,期望题
1.A,B,C均是0-10的整数,对于满足A<B<C的组合有多少种方式。
-
一个小时看到星星闪烁的概率为0.6,则半小时后看到星星闪烁的概率为多少。
-
两道行测的图推题,比较简单。
-
评估线性模型的方法有()
-
模型评估后,发现有高偏差,如何解决()
-
用于预测连续独立变量的方法()
-
Transformer中存在的不足。
一道简答题(15分)
一共有64瓶药,63瓶无毒,一瓶有毒,小白鼠服用有毒的药在三天后死亡,同时服用多种药不会死亡,现在只剩3天时间,最少需要多少只小白鼠才能找到有毒的药。
这个题在网上有类似的,问1000瓶药需要多少只小白鼠,可是不一样。
一道编程题(15分)
使用Pyhton实现一个一维损失函数的梯度下降算法。
一道设计题(20分)
定义事件之间的逻辑关系是一个NLP信息抽取领域的重要研究问题,它管在从自然语言文本中抽取出结构化的事件描述与事件之间的关系。我们定义事件具备如下信息(触发词、事件类型、事件属性了 。例如,在数讯文本中“2021年,恒生电子正式宣布收购Summit"中包括事件类别触发词”收购”,收购方(事件属性] 方生电子”,被收购方(事件属性)“Summit”,时间(事件属性)为“2021年”。而事件与事件之间存在潜在关系,如 因果关系(如关键词: 归因于等等) ,继承关系(如关键词 导致,造成) 等等,理清事件之间的关系则可为金融事件驱动的投资、风控等提供辅助信号,因此它也成为金融科技的重要构成。 但是,考虑到金融事件,金融事件逻辑关系的多样性,在生产中常面临无法定义的情况。具体而言,传统分类抽取方法难以支持快速新增事件类型与关系判断,新增类型与关系判断意味看大量语料标注,并重新训练模型。针对上述问题,请提出你认为可行的方案设计,以使得金融事件,事件关系抽取模型能快速扩展,可包括但不限于schema设计、数据标注、算法设计、训练方法设计等。
主动放弃了最后一道...