与 AI 同行,利用 ChatGLM 构建知识图谱

文章介绍了如何利用大模型如ChatGPT和ChatGLM在金融场景中自动化构建知识图谱,减少了人力和规则依赖,同时指出了模型在内容可控性和数据清洗方面的挑战,并分享了通过前置对话改善结果的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是东方财富的一名算法工程师,这里分享一些利用大模型赋能知识图谱建设的一些实践。

为什么知识图谱需要大模型

在金融场景中,天然会有大量结构化的数据需要投入大量的人力去生产和维护,而这样的数据又会大量被应用在下游的标签、推荐、风控等场景。比如基金关联的基金经理,基金净值,基金重仓股等信息,需要从各个基金公司的公告信息中进行提取。

做个类比,在 1.0 时代,我们会利用大量的规则和人力去提取和校验相应的数据,但这种方法往往需要针对特定的文本内容去维护各自的规则,成本较高。在 2.0 时代我们可以构建相应的深度学习模型,去辅助完成 NER、实体链接等工作。在这个过程中,数据的清洗,标注和训练,往往需要非常专业的标注人员和算法开发参与,而且其准确率需要大量的工作来提高。在大模型时代,我们发现 ChatGPT 能以一个相对非常高的准确率去完成各式各样的任务,这也让我们有一个想法,是否可以利用大模型去辅助我们建设知识图谱(毕竟不是啥业务都上得起大模型,一个图谱能解决下游很多任务)。

通过一些实践发现,ChatGPT 的确可以根据海量文本数据自动生成实体、属性和关系三元组等知识元素,从而快速构建大规模的知识图谱。

利用 ChatGPT 构建知识图谱

社区里已经有不少利用 ChatGPT 甚至 GPT4 构建知识图谱的案例:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值