深度学习技术栈 —— Pytorch之TensorDataset、DataLoader

本文介绍了如何在Pytorch中使用TensorDataset和DataLoader处理数据,包括创建TensorDataset以整合输入数据和正确答案,以及如何从.csv文件转换为tensor张量并通过DataLoader进行加载和预处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习技术栈 —— Pytorch之TensorDataset、DataLoader


前言

简单来说,TensorDatasetDataLoader这两个类的作用, 就是将数据读入并做整合,以便交给模型处理。就像石油加工厂一样,你不关心石油是如何采集与加工的,你关心的是自己去哪加油,油价是多少,对于一个模型而言,DataLoader就是这样的一个予取予求的数据服务商。

参考文章或视频链接
[1] How to use TensorDataset, Dataloader (pytorch)

一、TensorDataset、DataLoader的用法?

# coding:utf-8
# @Time: 2024/1/23 上午9:57
# @Author: 键盘国治理专家
# @File: __init__.py.py
# @Description: 

import numpy as np
import torch
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader


def test_TensorDataset():
    input = np.random.rand(4, 2)  # Input data
    correct = np.random.rand(4, 1)  # Correct answer data

    input = torch.FloatTensor(input
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值