
深度学习
文章平均质量分 91
深度学习的一些记录
panfengblog
51522zzwlwlbb~
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning 论文复现
Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning 论文复现代码链接:点我????1. 模型说明网络使用的是LeNet-5,只包含两个卷积层和若干全连接层,参数量很小数据集使用的mnist手写数据集(训练集:60000 测试集:10000)实现了Backdoor的两种攻击形式(instance-key和patten-key)2. Input-instance-key strategies直接使原创 2021-02-05 21:59:39 · 1955 阅读 · 4 评论 -
Faster-RCNN详解
Faster-RCNN详解Faster-RCNN源码分析可以点击这里1. 向前传播过程1.1 CNN提取特征就是将图片输入到预训练好的CNN网络中获取特征图feature map。以含有四层maxpool的vgg网络为例,输入图片大小为(w,h,3),则输出特征图的大小为(w/16, h/16, 512)1.2 RPN网络Faster-RCNN一个重要的变化就是抛弃了前代RCNN使用SS(Selective Search)方法生成检测框,而是使用RPN网络。1.2.1 生成anchor ba原创 2020-07-20 22:06:46 · 1210 阅读 · 0 评论 -
Faster-RCNN源码解析(simple-faster-rcnn-pytorch)
Faster-RCNN源码解析(simple-faster-rcnn-pytorch)这里采用源码地址:点我想了很多种方式详细解析Faster-rcnn的源码,但是Faster-rcnn源码比较复杂,有比较长,功能模块又非常多,一一介绍的话可能会看的晕头转向,所以我还是从预测和训练两个过程种用到的一些功能模块进行一些介绍,这是我个人阅读过程的理解(自己复盘的时候也能快速上手),当然能供大家参考就更好了,如有错误还望指正。整体工作的流程图1 预测过程1.1 vgg16网络结构代码位置:./mod原创 2020-07-20 21:59:52 · 1544 阅读 · 0 评论 -
迁移学习只进行部分层的训练
迁移学习只进行部分层的训练迁移学习:主要有3类:第一类,使用别人训练好的权重参数,作为初始化权重参数,进行接下来的训练第二类:使用别人训练好的权重参数,冻结预测层之前的所有的权重参数,进行接下来的训练第三类:使用别人训练好的权重参数,即finetune,不冻结最后一个卷积层和全连接层,对这两个层进行参数的更新和训练pytorch需要冻结的话只需将相应层的requires_grad修改为false即可转载于这篇博客...转载 2020-07-18 11:22:15 · 1495 阅读 · 0 评论 -
RCNN详解
RCNN详解RCNN即region proposals(候选区域) + CNN,是将CNN引入目标检测领域的开山之作(2014年),大大提高了目标检测的效果,在其后也是出现了更优异的变体Fast RCNN, Faster RCNN。下文按照RCNN的工作过程依次介绍1. 生成候选区域获取候选区域最直接的方式就是滑窗法了,但是滑窗法需要用一个固定大小的小窗口遍历整张图片,因此其有很多的局限性。所以一般都是使用一些候选区域(Region Proposal)算法,候选区域算法使用一些图像分割的算法来识别原创 2020-07-14 17:38:52 · 31741 阅读 · 1 评论 -
【转】Pytorch 查看模型网络结构
链接转载 2020-04-28 23:28:13 · 2027 阅读 · 0 评论