最优传输问题
考虑一个网络零售商(卖电子阅读器的),在NNN个地区各有一个存储仓库。现在有K个顾客要订购电子书阅读器。假设第nnn个仓库xnx_{n}xn含有mnm_{n}mn个阅读器,而第kkk个顾客yky_{k}yk要订购hkh_{k}hk个阅读器(nnn和kkk分别是111到NNN和111到KKK之间的任意值)。传输代价c(x,y)c(x,y)c(x,y)是仓库xxx和顾客yyy之间的距离。最优传输问题就是寻找讲NNN个仓库里的所有阅读器运送到所有KKK个顾客所在位置的最廉价的运送方式。这种运送方式可以用一个N×KN\times KN×K矩阵Γ\GammaΓ来表示,其中Γnk\Gamma_{nk}Γnk个元素表示从第nnn个仓库运送到第kkk个顾客手中的阅读器的数量。另外,每个仓库运出阅读器的数量必须和该仓库所拥有的阅读器的数量相等,同样的,每个顾客收到的阅读器的数量也必须和该顾客订购的阅读器的数量相等。这个限制条件可以用如下两个公式来表示,
∑kΓnk=mn\sum\limits_{k}\Gamma_{nk}=m_{n}k∑Γnk=mn
∑nΓnk=hk\sum\limits_{n}\Gamma_{nk}=h_{k}n∑Γnk=hk
此外,矩阵Γ\GammaΓ的每一个元素必须是非负的。
最优传输方案T^\hat{T}T^就是在上述限制条件下使得总的传输代价最小的传输矩阵,即
T^=argminΓ∑n,kΓnkc(xn,yk)\hat{T}=argmin_{\Gamma}\sum\limits_{n,k}\Gamma_{nk}c(x_{n},y_{k})T^=argminΓn,k∑Γnkc(xn,yk)
在上式中,我们是假设传输LLL个阅读器从xnx_{n}xn到yky_{k}yk的代价是传输一个阅读器的LLL倍。然而,在大部分的现实问题中,这种假设一般是不成立的,这里只是为了分析方便。
概率模型
在机器学习和统计问题中,通常把最优传输问题以概率的形式表示。考虑两个有限的概率空间(X,P)(X,P)(X,P)和(Y,Q)(Y,Q)(Y,Q),其中XXX和YYY是有限集,PPP和QQQ分别是在两个集合上的概率分布函数。概率PPP和QQQ之间的最优传输γ^\hat{\gamma}γ</