最优传输和Wasserstein GANs理解

最优传输问题

考虑一个网络零售商(卖电子阅读器的),在NNN个地区各有一个存储仓库。现在有K个顾客要订购电子书阅读器。假设第nnn个仓库xnx_{n}xn含有mnm_{n}mn个阅读器,而第kkk个顾客yky_{k}yk要订购hkh_{k}hk个阅读器(nnnkkk分别是111NNN111KKK之间的任意值)。传输代价c(x,y)c(x,y)c(x,y)是仓库xxx和顾客yyy之间的距离。最优传输问题就是寻找讲NNN个仓库里的所有阅读器运送到所有KKK个顾客所在位置的最廉价的运送方式。这种运送方式可以用一个N×KN\times KN×K矩阵Γ\GammaΓ来表示,其中Γnk\Gamma_{nk}Γnk个元素表示从第nnn个仓库运送到第kkk个顾客手中的阅读器的数量。另外,每个仓库运出阅读器的数量必须和该仓库所拥有的阅读器的数量相等,同样的,每个顾客收到的阅读器的数量也必须和该顾客订购的阅读器的数量相等。这个限制条件可以用如下两个公式来表示,
∑kΓnk=mn\sum\limits_{k}\Gamma_{nk}=m_{n}kΓnk=mn
∑nΓnk=hk\sum\limits_{n}\Gamma_{nk}=h_{k}nΓnk=hk
此外,矩阵Γ\GammaΓ的每一个元素必须是非负的。

最优传输方案T^\hat{T}T^就是在上述限制条件下使得总的传输代价最小的传输矩阵,即
T^=argminΓ∑n,kΓnkc(xn,yk)\hat{T}=argmin_{\Gamma}\sum\limits_{n,k}\Gamma_{nk}c(x_{n},y_{k})T^=argminΓn,kΓnkc(xn,yk)
在上式中,我们是假设传输LLL个阅读器从xnx_{n}xnyky_{k}yk的代价是传输一个阅读器的LLL倍。然而,在大部分的现实问题中,这种假设一般是不成立的,这里只是为了分析方便。

概率模型

在机器学习和统计问题中,通常把最优传输问题以概率的形式表示。考虑两个有限的概率空间(X,P)(X,P)(X,P)(Y,Q)(Y,Q)(Y,Q),其中XXXYYY是有限集,PPPQQQ分别是在两个集合上的概率分布函数。概率PPPQQQ之间的最优传输γ^\hat{\gamma}γ</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值