基于Java的个性化推荐系统:UserCF与ItemCF算法实现
项目简介
本项目是一个基于Java开发的个性化电影推荐系统,通过实现用户协同过滤(UserCF)和基于电影的协同过滤(ItemCF)两种算法,利用统计学中的皮尔森(Pearson)相关系数计算用户或电影之间的相似度,精准捕捉用户偏好,为不同用户提供个性化的电影推荐,实现千人千面的精准推送。项目地址:Gitee链接。
技术栈
- 编程语言:Java
- 推荐算法:UserCF、ItemCF
- 相似度计算:皮尔森(Pearson)相关系数
项目结构
recommendation-algorithm/
├── README.md
├── src/
│ ├── main/
│ │ ├── java/
│ │ │ └── com/
│ │ │ └── recommendation/
│ │ │ ├── algorithm/
│ │ │ │ ├── ItemCF.java
│ │ │ │ └── UserCF.java
│ │ │ ├── data/
│ │ │ │ ├── MovieData.java
│ │ │ │ └── UserData.java
│ │ │ ├── model/
│ │ │ │ ├── Movie.java
│ │ │ │ └── User.java
│ │ │ ├── service/
│ │ │ │ └── RecommendationService.java
│ │ │ └── util/
│ │ │ └── SimilarityCalculator.java
│ │ └── resources/
│ │ └── movies.csv
└── pom.xml
核心功能实现
1. 数据准备
项目使用CSV文件存储电影和用户数据,包括电影ID、电影名称、用户ID、用户对电影的评分等信息。通过MovieData
和UserData
类加载数据,并进行预处理。
2. 相似度计算
利用皮尔森(Pearson)相关系数计算用户或电影之间的相似度。SimilarityCalculator
类实现了相似度计算的核心逻辑。
public class SimilarityCalculator {
public double calculatePearsonCorrelation(List<Rating> ratings1, List<Rating> ratings2) {
// ... 计算皮尔森相关系数逻辑
}
}
3. UserCF算法
UserCF
类实现了用户协同过滤算法。根据相似用户的行为进行推荐,首先找到与目标用户相似的用户,然后根据这些相似用户的喜好生成推荐列表。
public class UserCF {
public List<Movie> recommendMovies(User targetUser, int numRecommendations) {
// ... 根据相似用户推荐电影逻辑
}
}
4. ItemCF算法
ItemCF
类实现了基于电影的协同过滤算法。基于相似电影进行推荐,首先找到与目标电影相似的电影,然后根据这些相似电影的受众生成推荐列表。
public class ItemCF {
public List<Movie> recommendMovies(Movie targetMovie, int numRecommendations) {
// ... 根据相似电影推荐电影逻辑
}
}
5. 推荐服务
RecommendationService
类作为推荐服务的入口,根据用户需求选择合适的推荐算法,并生成最终的推荐列表。
public class RecommendationService {
public List<Movie> recommendMovies(User user, int numRecommendations) {
// ... 根据用户选择UserCF或ItemCF进行推荐逻辑
}
}
运行与测试
- 确保项目依赖已正确配置(通过
pom.xml
管理依赖)。 - 加载CSV文件中的电影和用户数据。
- 调用
RecommendationService
类的recommendMovies
方法,传入用户信息和推荐数量,生成推荐列表。 - 对生成的推荐列表进行验证,确保推荐结果的准确性和多样性。
总结
本项目通过实现UserCF和ItemCF两种推荐算法,并结合皮尔森相关系数计算相似度,为用户提供了个性化的电影推荐服务。未来可以进一步优化算法性能,提高推荐结果的准确性和实时性;同时,可以考虑引入更多数据源和特征,丰富推荐模型的维度和深度。