基于Java的个性化推荐系统:UserCF与ItemCF算法实现

基于Java的个性化推荐系统:UserCF与ItemCF算法实现

项目简介

本项目是一个基于Java开发的个性化电影推荐系统,通过实现用户协同过滤(UserCF)和基于电影的协同过滤(ItemCF)两种算法,利用统计学中的皮尔森(Pearson)相关系数计算用户或电影之间的相似度,精准捕捉用户偏好,为不同用户提供个性化的电影推荐,实现千人千面的精准推送。项目地址:Gitee链接

技术栈
  • 编程语言:Java
  • 推荐算法:UserCF、ItemCF
  • 相似度计算:皮尔森(Pearson)相关系数
项目结构
recommendation-algorithm/
├── README.md
├── src/
│   ├── main/
│   │   ├── java/
│   │   │   └── com/
│   │   │       └── recommendation/
│   │   │           ├── algorithm/
│   │   │           │   ├── ItemCF.java
│   │   │           │   └── UserCF.java
│   │   │           ├── data/
│   │   │           │   ├── MovieData.java
│   │   │           │   └── UserData.java
│   │   │           ├── model/
│   │   │           │   ├── Movie.java
│   │   │           │   └── User.java
│   │   │           ├── service/
│   │   │           │   └── RecommendationService.java
│   │   │           └── util/
│   │   │               └── SimilarityCalculator.java
│   │   └── resources/
│   │       └── movies.csv
└── pom.xml
核心功能实现
1. 数据准备

项目使用CSV文件存储电影和用户数据,包括电影ID、电影名称、用户ID、用户对电影的评分等信息。通过MovieDataUserData类加载数据,并进行预处理。

2. 相似度计算

利用皮尔森(Pearson)相关系数计算用户或电影之间的相似度。SimilarityCalculator类实现了相似度计算的核心逻辑。

public class SimilarityCalculator {
    
    public double calculatePearsonCorrelation(List<Rating> ratings1, List<Rating> ratings2) {
        // ... 计算皮尔森相关系数逻辑
    }
}
3. UserCF算法

UserCF类实现了用户协同过滤算法。根据相似用户的行为进行推荐,首先找到与目标用户相似的用户,然后根据这些相似用户的喜好生成推荐列表。

public class UserCF {
    
    public List<Movie> recommendMovies(User targetUser, int numRecommendations) {
        // ... 根据相似用户推荐电影逻辑
    }
}
4. ItemCF算法

ItemCF类实现了基于电影的协同过滤算法。基于相似电影进行推荐,首先找到与目标电影相似的电影,然后根据这些相似电影的受众生成推荐列表。

public class ItemCF {
    
    public List<Movie> recommendMovies(Movie targetMovie, int numRecommendations) {
        // ... 根据相似电影推荐电影逻辑
    }
}
5. 推荐服务

RecommendationService类作为推荐服务的入口,根据用户需求选择合适的推荐算法,并生成最终的推荐列表。

public class RecommendationService {
    
    public List<Movie> recommendMovies(User user, int numRecommendations) {
        // ... 根据用户选择UserCF或ItemCF进行推荐逻辑
    }
}
运行与测试
  • 确保项目依赖已正确配置(通过pom.xml管理依赖)。
  • 加载CSV文件中的电影和用户数据。
  • 调用RecommendationService类的recommendMovies方法,传入用户信息和推荐数量,生成推荐列表。
  • 对生成的推荐列表进行验证,确保推荐结果的准确性和多样性。
总结

本项目通过实现UserCF和ItemCF两种推荐算法,并结合皮尔森相关系数计算相似度,为用户提供了个性化的电影推荐服务。未来可以进一步优化算法性能,提高推荐结果的准确性和实时性;同时,可以考虑引入更多数据源和特征,丰富推荐模型的维度和深度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhr2012236442

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值