指纹特征提取及描述(附Python代码)

本文介绍了一个使用Python实现的指纹特征提取和描述项目,包括图像增强、骨架提取、端点和分叉点的检测。通过GitHub分享的代码,展示了指纹方向场、频率场的计算,以及Gabor滤波器的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首发于https://juejin.cn/post/6924305350497828872/,转载注明出处

GitHub

https://github.com/KinghooWei/FingerprintFeatureExtractionAndDescription
开门见山啦,记得star一下

最终效果图

最终效果图

设计思路

项目的编程环境为python3.7.7,编译器使用pycharm2019.3.4 x64。首先为项目设计一个GUI界面,界面有四个按钮,分别是“选择图片”、“图像增强”、“细化”和“特征提取及描述”,使用是按顺序点击按钮即可,每完成一步,都会在按钮下方显示处理结果,最终的特征描述会在右下的文本框中显示。

图像增强

图像归一化

由于不同的指纹图像在灰度图分布上有很大的差异,会给之后的图像特征提取和匹配增加难度,因此指纹图像要进行归一化处理,将所有图像转换成具有给定均值和方差的标准图像。归一化并不能改变指纹的脊线和谷线的清晰程度,其结果是减少了不同指纹图像之间灰度值的差异,并为接下来的图像处理做好准备。归一化公式如下:

G ( i , j ) = { M 0 + σ 0 2 ( I ( i , j ) − M ) 2 σ 2 I ( i , j ) > M M 0 − σ 0 2 ( I ( i , j ) − M ) 2 σ 2 I ( i , j ) ≤ M G_{\left(i,j\right)}=\left\{ \begin{aligned} &M_0+\sqrt{\frac{\sigma_0^2(I(i,j)-M)^2}{\sigma^2}} &I(i,j)>M\\ &M_0-\sqrt{\frac{\sigma_0^2(I(i,j)-M)^2}{\sigma^2}} &I(i,j)\le M \end{aligned} \right. G(i,j)=M0+σ2σ02(I(i,j)M)2 M0σ2σ02(I(i,j)M)2 I(i,j)>MI(i,j)M

式中 I ( i , j ) I\left(i,j\right) I(i,j) G ( i , j ) G_{\left(i,j\right)} G(i,j)分别为规格化前后的图像, M 0 M_0 M0 σ 0 2 \sigma_0^2 σ02是预先设定的图像平均灰度和均方差, M M M σ 2 \sigma^2 σ

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值