Python中进制问题

一、各个进制问题概览

在这里插入图片描述
参考链接:https://www.cnblogs.com/trent-fzq/articles/10889959.html

1.1 二进制

In [1]: 0b10
Out[1]: 2
  • 二进制以0b开头,从右往左,依次 2 i 2^i 2i

1.2 八进制

In [2]: 0o10
Out[2]: 8
  • 八进制以0o开头,从右往左,依次 8 i 8^i 8i

1.3 十六进制

In [3]: 0x10
Out[3]: 16
  • 十六进制以0x开头,从右往左,依次 1 6 i 16^i 16i

1.4 十进制

In [4]: 10
Out[4]: 10
  • 十进制就是我们知晓的数字

二、进制间转换

2.1 十进制转化为二进制:bin(10)

In [5]: bin(10)
Out[5]: '0b1010'

2.2 十进制转化为八进制:oct(10)

In [6]: oct(10)
Out[6]: '0o12'

2.3 十进制转化为十六进制:hex(10)

In [7]: hex(10)
Out[7]: '0xa'

2.4 其他进制转化为十进制: int()

  • 方法一
In [8]: int('0b1010',2)
Out[8]: 10

In [9]: int('0o10',8)
Out[9]: 8

In [10]: int('0xa',16)
Out[10]: 10
  • 方法二
In [13]: int('1010',2)
Out[13]: 10

In [15]: int('12',8)
Out[15]: 10

In [16]: int('a',16)
Out[16]: 10

备注:int(x,y)括号中x是需要转换的数值type必须是字符串,y是当前进制数

  • 方法三
In [17]: eval('1111')
Out[17]: 1111

# 二进制转十进制
In [18]: eval('0b1111')
Out[18]: 15

# 十六进制转十进制
In [19]: eval('0x1111')
Out[19]: 4369

八进制转十进制
In [21]: eval('0o1111')
Out[21]: 585

备注:type必须是str且前面的进制标志(0b,0o,0x)不可少

三、十进制转化为固定长度的多进制类型

3.1 转化为二进制

In [22]: '{:08b}'.format(9)
Out[22]: '00001001'
In [25]: a =bin(5)[2:]

In [26]: a
Out[26]: '101'

二进制

In [27]: c = str.zfill(a,8)

In [28]: c
Out[28]: '00000101'

3.2 转化为八进制

In [23]: '{:06o}'.format(9)
Out[23]: '000011'
In [29]: a = oct(9)[2:]

In [30]: a
Out[30]: '11'
In [31]: c = str.zfill(a,8)

In [32]: c
Out[32]: '00000011'

3.3 转化为十六进制

In [24]: '{:06x}'.format(9)
Out[24]: '000009'
In [33]: a = hex(20)[2:]

In [34]: a
Out[34]: '14'
In [35]: a = hex(20)

In [36]: a
Out[36]: '0x14'
In [37]: str.zfill(a,8)
Out[37]: '00000x14'

备注:’{:08b}’.format(9) # :b表示转换为二进制,08表示高位用0补够8位

参考链接:https://www.cnblogs.com/renke123/p/11029906.html

四、原码、反码和补码

4.1 介绍

  • 计算机的所有数据在底层都是以二进制的补码形式存储,实际人们看到的数字是原码转化来的,而原码是通过补码得到的。

  • 即:补码 -> 原码 -> 最后人们看到的数。

  • 进制转换的时候需要先把内存中存储的补码拿出来变成原码在进行转换输出。

  • 正数高位补0

  • 负数高位补1(前面空白位全是1)

  • 原码: 用来转换对应进制

  • 反码: 二进制码0变1,1变0叫做反码,反码用于原码补码之间的转换.(符号位不变)

  • 补码: 用来做数据的存储运算. 补码提出的根源是让计算机底层的实现减法操作(可以表达出一个数的正负)

4.2 运算

  • 正数: 原码 = 反码 = 补码
  • 负数: 原码 = 补码取反+1 给补码求原码
  • 负数: 补码 = 原码取反+1 给原码求补码

(原码 反码 补码之间的转换 , 符号位不要动)

参考链接:https://www.cnblogs.com/zhangziqiu/archive/2011/03/30/ComputerCode.html

4.2.1 原码

  • 原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制:
[+1]原 = 0000 0001

[-1]原 = 1000 0001
  • 第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是:
[1111 1111 , 0111 1111]

[-127 , 127]

原码是人脑最容易理解和计算的表示方式.

4.2.2 反码

  • 反码的表示方法是:

    • 正数的反码是其本身

    • 负数的反码是在其原码的基础上, 符号位不变,其余各个位取反.

[+1] = [00000001]原 = [00000001]反

[-1] = [10000001]原 = [11111110]反
  • 可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算.

4.2.3 补码【复数 补码= 反码+1】

  • 补码的表示方法是:

    • 正数的补码就是其本身

    • 负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)

[+1] = [00000001]原 = [00000001]反 = [00000001]补

[-1] = [10000001]原 = [11111110]反 = [11111111]补
  • 对于负数, 补码表示方式也是人脑无法直观看出其数值的. 通常也需要转换成原码在计算其数值.

4.2.4 为何要使用原码、反码和补码?

  • 在开始深入学习前, 我的学习建议是先"死记硬背"上面的原码, 反码和补码的表示方式以及计算方法.

  • 现在我们知道了计算机可以有三种编码方式表示一个数. 对于正数因为三种编码方式的结果都相同:

[+1] = [00000001]原 = [00000001]反 = [00000001]补
  • 所以不需要过多解释. 但是对于负数:
[-1] = [10000001]原 = [11111110]反 = [11111111]补
  • 可见原码, 反码和补码是完全不同的. 既然原码才是被人脑直接识别并用于计算表示方式, 为何还会有反码和补码呢?

  • 首先, 因为人脑可以知道第一位是符号位, 在计算的时候我们会根据符号位, 选择对真值区域的加减. (真值的概念在本文最开头). 但是对于计算机, 加减乘数已经是最基础的运算, 要设计的尽量简单. 计算机辨别"符号位"显然会让计算机的基础电路设计变得十分复杂! 于是人们想出了将符号位也参与运算的方法. 我们知道, 根据运算法则减去一个正数等于加上一个负数, 即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法而没有减法, 这样计算机运算的设计就更简单了.

  • 于是人们开始探索 将符号位参与运算, 并且只保留加法的方法. 首先来看原码:

  • 计算十进制的表达式: 1-1=0

1 - 1 = 1 + (-1) = [00000001]原 + [10000001]原 = [10000010]原 = -2
  • 如果用原码表示, 让符号位也参与计算, 显然对于减法来说, 结果是不正确的.这也就是为何计算机内部不使用原码表示一个数.

  • 为了解决原码做减法的问题, 出现了反码:

  • 计算十进制的表达式: 1-1=0

1 - 1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原= 
[0000 0001]反 + [1111 1110]反 = [1111 1111]反 = [1000 0000]原 = -0
  • 发现用反码计算减法, 结果的真值部分是正确的. 而唯一的问题其实就出现在"0"这个特殊的数值上. 虽然人们理解上+0和-0是一样的, 但是0带符号是没有任何意义的. 而且会有[0000 0000]原和[1000 0000]原两个编码表示0.

  • 于是补码的出现, 解决了0的符号以及两个编码的问题:

1-1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原 = 
[0000 0001]补 + [1111 1111]补 = [0000 0000]补=[0000 0000]原
  • 这样0用[0000 0000]表示, 而以前出现问题的-0则不存在了.而且可以用[1000 0000]表示-128:
(-1) + (-127) = [1000 0001]原 + [1111 1111]原 = [1111 1111]补 + [1000 0001]补 = [1000 0000]补
  • -1-127的结果应该是-128, 在用补码运算的结果中, [1000 0000]补 就是-128. 但是注意因为实际上是使用以前的-0的补码来表示-128, 所以-128并没有原码和反码表示.(对-128的补码表示[1000 0000]补算出来的原码是[0000 0000]原, 这是不正确的)

  • 使用补码, 不仅仅修复了0的符号以及存在两个编码的问题, 而且还能够多表示一个最低数. 这就是为什么8位二进制, 使用原码或反码表示的范围为[-127, +127], 而使用补码表示的范围为[-128, 127].

  • 因为机器使用补码, 所以对于编程中常用到的32位int类型, 可以表示范围是: [-231, 231-1] 因为第一位表示的是符号位.而使用补码表示时又可以多保存一个最小值.

五、位运算符

  • Python中的按位运算符有:左移运算符(<<),右移运算符(>>),按位与(&),按位或(|),按位翻转(~)。这些运算符中只有按位翻转运算符是单目运算符,其他的都是双目运算符。
  • python中的&:
    • A&B
      利用A,B的补码按位与(1&1=1,1&0=0,0&0=0),然后把得到的补码还原,1&1=1
  • python中的|:
    • A|B
      利用A,B的补码按位并(1|1=1,1|0=1,0|0=0),然后把得到的补码还原。1|0=1
  • python中的^:
    • A^B
      利用A,B的补码按位异或(11=0,10=1,00=0,即相同为0,不同为1),然后把得到的补码还原。11=0
  • python中的~:
    • ~A
      A的补码按位取反(1=0,0=1),得到的为补码,输出还原结果。~1=-2(因为1的补码为0000 0001,按位取反为1111 1110 这个是-2的补码)
  • python中的>>:
    • A>>n
      A的补码按位向右移动n位,左边缺少的地方补符号位(即正数补0,负数补1)(相当于除以2的n次方取整 -8>>1=-8//2=-4 -8>>2=-8//4=-2)
  • python中的<<:
    • B<< n
      B的补码按位向做移动n为,右边缺少的补0(相当于乘以2 ,4<<1=42=8,4<<2=44=16)

注意:python的<<,与c和java中的不一样,因为他们有字符长度,8位,16位,32位,所以32位为例,如果1<<31=-2147483648,1<<32=0,因为高位溢出,但是在python中1<<31=2147483648,1<<32=4294967296,因为在python中整数是不限长度的(即不存在高位溢出)

参考链接:https://blog.csdn.net/u013061183/article/details/78525807

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值