拉卡拉支付:推出支付产业互联网新大门

受时代发展的大背景影响,不同时期均有明显的特色,并配有专属的红利。但是这些红利需要善于捕捉时代特色的企业进行兑现,只有踏准发展节奏才能够享受到红利带来的发展机遇。作为国内领先的第三方支付平台,拉卡拉发展的四个时期具有明显的时代特色,准确踏准发展节奏,不断丰富完善供应链核心体系。
细数拉卡拉四个时期的发展,1.0时代构建了覆盖全国的便民支付网络,帮全国超过10万家便利店引流,增加其用户粘性,“让便利店更加便利”。2.0时代通过推广POS机具开展银行卡收单等服务,让街边店都能够受理银行卡,解决实体中小微企业经营过程中不能使用银行卡的问题。3.0时代全面布局智能支付终端,拥抱移动互联网,通过对扫码、刷卡、NFC等支付方式的全支持,以及各行业应用场景的全覆盖,为商户提供会员营销、增值金融服务等,成为在收单侧领先的第三方支付公司,并于2019年4月25日成功登陆A股。
根据拉卡拉刚发的半年报,2019上半年拉卡拉实现净利润3.66亿元,同比增长25.31%;覆盖商户超过2100万家,支付业务累计交易笔数达36.7亿笔,同比增长67%;实现商户经营业务收入1.53亿元,同比增长53%。
接下来,拉卡拉进入战略4.0时代,将基于科技、云服务及人工智能技术,重点打造四大核心能力,即支付云、金融云、电商云、信息云,除了作为基础和入口的支付收单服务,还为中小微商户提供贷款、理财、保险、保理、融资租赁、信用卡、会员管理、数据营销、进销存管理、积分消费运营、云分销等各类服务,真正实现全场景、全支付、全服务。
拉卡拉战略4.0时代是准确踏准发展节奏的又一重要选择,通过布局产业互联网,用科技和互联网赋能传统行业,全维度为中小微商户经营赋能。

内容概要:本文详细比较了GPU、TPU专用AI芯片在大模型推理优化方面的性能、成本及适用场景。GPU以其强大的并行计算能力和高带宽显存,适用于多种类型的神经网络模型和计算任务,尤其适合快速原型开发和边缘计算设备。TPU专为机器学习设计,擅长处理大规模矩阵运算密集型任务,如Transformer模型的推理,具有高吞吐量和低延迟特性,适用于自然语言处理和大规模数据中心的推理任务。专用AI芯片通过高度定制化架构,针对特定神经网络模型进行优化,如卷积神经网络(CNN),在处理特定任务时表现出色,同时具备低功耗和高能效比的优势,适用于边缘计算设备。文章还介绍了各自的优化工具和框架,如CUDA、TensorRT、TPU编译器等,并从硬件成本、运营成本和开发成本三个角度进行了成本对比。 适合人群:从事人工智能、深度学习领域的研究人员和技术人员,尤其是对大模型推理优化感兴趣的读者。 使用场景及目标:①帮助读者理解GPU、TPU和专用AI芯片在大模型推理中的优缺点;②为选择适合的硬件平台提供参考依据,以实现最优的推理性能和成本效益;③介绍各种优化工具和框架,帮助开发者高效部署和优化模型。 其他说明:本文不仅涵盖了硬件架构特性,还深入探讨了优化技术和应用场景,旨在为读者提供全面的技术参考。在选择硬件平台时,需综合考虑具体任务需求、预算限制及开发资源等因素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值