sklearn.metrics.ari/acc/nmi使用报错&sklearn各种评价指标

本文探讨了在sklearn库中遇到的metrics模块使用错误,包括accuracy_score、normalized_mutual_info_score和adjusted_rand_score。同时,文章介绍了机器学习中的评价指标,分别针对回归任务和分类任务进行了说明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、使用报错

尝试将from sklearn import metrics修改为

from sklearn.metrics import accuracy_score
from sklearn.metrics.cluster import normalized_mutual_info_score
from sklearn.metrics.cluster import adjusted_rand_score

不确定是不是metrics版本的问题。

二、评价指标

1. 回归

1)#回归方差(反应自变量与因变量之间的相关程度)
explained_variance_score(y_true, y_pred, sample_weight=None, multioutput=‘uniform_average’)

2)#平均绝对误差
mean_absolute_error(y_true,y_pred,sample_weight=None,
multioutput=‘uniform_average’)

3)#均方差
mean_squared_error(y_true, y_pred, sample_weight=None, multioutput=‘uniform_average’)

4)#中值绝对误差
median_absolute_error(y_true, y_pred) 

5)#R平方值
r2_score(y_true, y_pred,sample_weight=None,multioutput=‘uniform_average’)

2. 分类

1)#精度
accuracy_score(y_true,y_pre)

2)#ROC曲线下的面积;较大的AUC代表了较好的performance
auc(x, y, reorder=False)

3)#根据预测得分计算平均精度(AP)
average_precision_scor
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值