【Numpy学习 05】数组的属性

本文介绍了Numpy数组的几个重要属性:ndim表示数组的维数或秩;shape返回数组的维度元组;size给出数组元素总数;dtype描述数组元素类型;itemsize表示每个元素的字节数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数组属性

  1. numpy.ndarray.ndim 用于返回数组的维数(轴的个数)也称为秩,一维数组的秩为 1,二维数组的秩为 2,以此类推。
  2. numpy.ndarray.shape 表示数组的维度,返回一个元组,这个元组的长度就是维度的数目,即 ndim 属性(秩)。
  3. numpy.ndarray.size 数组中所有元素的总量,相当于数组的 shape 中所有元素的乘积,例如矩阵的元素总量为行与列的乘积。
  4. numpy.ndarray.dtype ndarray 对象的元素类型。
  5. numpy.ndarray.itemsize 以字节的形式返回数组中每一个元素的大小。

实例

【例1】

import numpy as np

a = np.array([1, 2, 3, 4, 5])
print(a.shape) # (5,)
print(a.dtype) # int32
print(a.size) # 5
print(a.ndim) # 1
print(a.itemsize) # 4

b = np.array([[1, 2, 3], [4, 5, 6.0]])

print(b.shape) # (2, 3)
print(b.dtype) # float64
print(b.size) # 6
print(b.ndim) # 2
print(b.itemsize) # 8

【例2】在 ndarray 中所有元素必须是同一类型,否则会自动向下转换, int->float->str 。

import numpy as np

a = np.array([1, 2, 3, 4, 5])
print(a) # [1 2 3 4 5]

b = np.array([1, 2, 3, 4, '5'])
print(b) # ['1' '2' '3' '4' '5']

c = np.array([1, 2, 3, 4, 5.0])
print(c) # [1. 2. 3. 4. 5.]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值