详解 Spark 各种运行环境的搭建

一、Local 环境

本地模式,即不需要其他任何节点资源就可以在本地执行 Spark 代码的环境;区别于 IDEA 开发时的 local 环境

1. 搭建

  • Spark 下载地址:https://spark.apache.org/downloads.html

  • 下载 spark-3.0.0-bin-hadoop3.2.tgz 安装包并上传到虚拟机上的 /opt/software 目录

  • spark-3.0.0-bin-hadoop3.2.tgz 解压缩到 /opt/module 并修改名称

    tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C /opt/module
    cd /opt/module
    mv spark-3.0.0-bin-hadoop3.2.tgz spark-local
    
  • 进入 spark-local 目录执行 bin/spark-shell 检查是否搭建成功

    cd /opt/module/spark-local
    bin/spark-shell
    
  • 查看 Web 监控页面:http://hadoop102:4040

2. 操作

  • 命令行工具:

    bin/spark-shell
    
    # 进入 scala 命令工具
    sc.textFile("data/word.txt").flatMap(_.split(" "))
      .map((_,1)).reduceByKey(_+_).collect().foreach(println)
    
  • 提交应用:

    bin/spark-submit \
    --class org.apache.spark.examples.SparkPi \
    --master local[2] \
    ./examples/jars/spark-examples_2.12-3.0.0.jar \
    10
    
    • bin/spark-submit 表示提交命令
    • --class 表示要执行程序的主类
    • --master local[2] 表示部署模式,默认为本地模式,数字表示分配的虚拟 CPU 核数量
    • spark-examples_2.12-3.0.0.jar 表示运行的应用类所在的 jar 包
    • 10 表示程序的入口参数,用于设定当前应用的任务数量

二、Standalone 环境

独立部署模式,只使用 Spark 自身节点运行的集群模式,分为 master 和 workers

1. 集群规划

Spark Hadoop102 Hadoop103 Hadoop104
master
worker

2. 搭建

  • 下载 spark-3.0.0-bin-hadoop3.2.tgz 安装包并上传到虚拟机上的 /opt/software 目录

  • spark-3.0.0-bin-hadoop3.2.tgz 解压缩到 /opt/module 并修改名称

    tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C /opt/module
    cd /opt/module
    mv spark-3.0.0-bin-hadoop3.2.tgz spark-standalone
    
  • 修改配置文件

    # 1.进入 spark-standalone 的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值