Spark工作机制

本文详细介绍了Spark作业提交过程,从用户提交作业开始,通过Driver创建SparkContext并进行资源分配及监控;随后资源管理器为作业分配资源并启动Executor进程;SparkContext根据RDD依赖构建DAG图,并将其解析为Stage提交给TaskScheduler;最终TaskScheduler将Stage划分为Task发送给Executor执行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.用户提交作业,由driver创建一个SparkContext,分配并监控资源使用情况。
2.资源管理器为其分配资源,启动executor进程。
3.SparkContext根据RDD的依赖关系构建DAG图,提交给DAGScheduler解析成stage,然后提交给TaskScheduler,将stage划分为task发送给executor。
4.task在executor运行把结果反馈给TaskScheduler,一层层反馈上去,最后释放资源。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值