- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/rnFa-IeY93EpjVu0yzzjkw) 中的学习记录博客**
- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**
1.数据预处理
1.1 设置GPU
import torch.nn as nn
import torch.nn.functional as F
import torchvision,torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
1.2 数据导入
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
plt.rcParams['savefig.dpi'] = 500
plt.rcParams['figure.dpi'] = 500
plt.rcParams['font.sans-serif'] = ['SimHei']
import warnings
warnings.filterwarnings('ignore')
DataFrame = pd.read_excel('/content/drive/MyDrive/dia.xls')
DataFrame.head()
DataFrame.shape
1.3 数据检查
print('数据缺失值----------------------')
print(DataFrame.isnull().sum())
print('数据重复值----------------------')
print('数据集的重复值为:'f'{DataFrame.duplicated().sum()}')
1.4 数据分布分析
feature_map = {
'年龄':'年龄',
'高密度脂蛋白胆固醇':'高密度脂蛋白胆固醇',
'低密度脂蛋白胆固醇':'低密度脂蛋白胆固醇',
'极低密度脂蛋白胆固醇':'极低密度脂蛋白胆固醇',
'甘油三酯':'甘油三酯',
'总胆固醇':'总胆固醇',
'脉搏':'脉搏',
'舒张压':'舒张压',
'高血压史':'高血压史',
'尿素氮':'尿素氮',
'尿酸':'尿酸',
'肌酐':'肌酐',
'体重检查结果':'体重检查结果'
}
plt.figure(figsize = (15,10))
for i,(col,col_name) in enumerate(feature_map.items(),1):
plt.subplot(3,5,i)
sns.boxplot(x = DataFrame['是否糖尿病'],y=DataFrame[col])
plt.title(f'{col_name}的箱线图',fontsize=14)
plt.ylabel('树脂',fontsize=12)
plt.grid(axis='y',linestyle='--',alpha=0.7)
plt.tight_layout()
plt.show()
2.LSTM 模型
2.1 数据集构建
from sklearn.preprocessing import StandardScaler
X = DataFrame.drop(['卡号','是否糖尿病','高密度脂蛋白胆固醇'],axis=1)
y = DataFrame['是否糖尿病']
X = torch.tensor(np.array(X),dtype=torch.float32)
y = torch.tensor(np.array(y),dtype=torch.int64)
train_X,test_X,train_y,test_y = train_test_split(X,y,test_size=0.2,random_state=1)
train_X.shape,train_y.shape
from torch.utils.data import TensorDataset,DataLoader
train_dl = DataLoader(TensorDataset(train_X,train_y),batch_size=64,shuffle=False)
test_dl = DataLoader(TensorDataset(test_X,test_y),batch_size=64,shuffle=False)
2.2 定义模型
class model_lstm(nn.Module):
def __init__(self):
super(model_lstm, self).__init__()
self.lstm0 = nn.LSTM(input_size=13,hidden_size=200,num_layers=1,batch_first=True)
self.lstm1 = nn.LSTM(input_size=200,hidden_size=200,num_layers=1,batch_first=True)
self.fc0 = nn.Linear(200,2)
def forward(self,x):
out,hidden1 = self.lstm0(x)
out,_ = self.lstm1(out,hidden1)
out = self.fc0(out)
return out
model = model_lstm().to(device)
model
3.训练模型
3.1 定义训练函数
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小
num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出pred和真实值y之间的差距,y为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
3.2 定义测试函数
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset) # 训练集的大小
num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
test_loss, test_acc = 0, 0 # 初始化测试损失和正确率
# 当不进行训练时,停止梯度更新,节省计算内存消耗
# with torch.no_grad():
for imgs, target in dataloader: # 获取图片及其标签
with torch.no_grad():
imgs, target = imgs.to(device), target.to(device)
# 计算误差
tartget_pred = model(imgs) # 网络输出
loss = loss_fn(tartget_pred, target) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 记录acc与loss
test_loss += loss.item()
test_acc += (tartget_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
3.3 训练模型
loss_fn = nn.CrossEntropyLoss()
opt = torch.optim.Adam(model.parameters(),lr=1e-4)
epochs = 30
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
lr = opt.state_dict()['param_groups'][0]['lr']
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}, Lr:{:.2E}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss,lr))
print("="*20,'Done',"="*20)
4.模型评估
4.1 Loss与Accuracy图
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
from datetime import datetime
current_time = datetime.now() # 获取当前时间
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()