用sklearn.preprocessing做数据预处理(二)——Normalization

本文介绍了如何利用sklearn.preprocessing库进行数据预处理的正则化操作,包括l1和l2正则化。通过示例展示了normalize函数和Normalizer类的使用方法,适用于稠密和稀疏矩阵的数据处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Normalization(正则化,也有部分地方叫归一化,至于哪个翻译更准确这里不做讨论,暂且称作正则化)是将样本在向量空间模型上的一个转换,经常被使用在分类与聚类中
函数normalize提供了一个快速又简单的方式在一个单向量上来实现这正则化的功能。正则化有l1,l2等,这些都可以用上

from sklearn import preprocessing
import numpy as np

x = np.array([[1.,-1.,2.],
             [2.,0.,0.],
             [0.,1.,-1.]])

x_normalized = preprocessing.normalize(x, norm='l2')
x_normalized

array([[ 0.40824829, -0.40824829,  0.81649658],
       [ 1.        ,  0.        ,  0.        ],
       [ 0.        ,  0.70710678, -0.70710678]])

x_normalized = preprocessing.normalize(x, norm='l1')
x_normalized

array([[ 0.25, -0.25,  0.5 ],
       [ 1.  ,  0.  ,  0.  ],
       [ 0.  ,  0.5 , -0.5 ]])

preprocessing这个模块还提供了一个实用类Normalizer,使用transform方法同样也可以对新的数据做同样的转换
根据训练数据创建一个正则器

normalizer = preproce

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值