贝叶斯滤波器

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接: https://blog.csdn.net/renhaofan/article/details/82415167

bayes filter是一种观测数据和控制数据中计算置信度的通用算法

1.Derivation of Bayes filter

先做一些符号说明

  • z = observation
  • u = action
  • x = state
  • P(z|x)P(z|x) 运动转移概率(在x’状态下,执行了动作u之后,状态改变为x的概率)

关于公式数学推导有任何地方不懂可以点击这里,这里直接给出结论

Bel(xt)=P(xt|u1,z1,,ut,zt)=ηP(zt|xt)P(xt|ut,xt1)Bel(xt1)dxt1predictionbeforetakingmeasurementBel(xt)=P(xt|u1,z1,…,ut,zt)=ηP(zt|xt)∫P(xt|ut,xt−1)Bel(xt−1)dxt−1⏟predictionbeforetakingmeasurement

η=1P(zt|u1,z1,,ut)η=1P(zt|u1,z1,…,ut)

这里的ηη是根据recusive bayes我自己推导的。

分为两部分

  • Prediction step

Bel(xt)⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯=P(xt|ut,xt1)motionmodelBel(xt1)dxt1Bel(xt)¯=∫P(xt|ut,xt−1)⏟motionmodelBel(xt−1)dxt−1

  • correction step

Bel(xt)=ηP(zt|xt)sensororobservationmodelBel(xt)⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯Bel(xt)=ηP(zt|xt)⏟sensororobservationmodelBel(xt)¯

2. Algorithm

这里写图片描述
我不是很理解为什么这里\eta是这样操作的,与我上面的推导不一样,很奇怪,我不是很理解,这里说\eta是一个归一化的参数,保证所有概率和为1

3. 形象化例子

3.1 机器人小萝卜

这一部分有一些细节我感觉是原文有问题,但是也可能是我理解错了,所以如果下面有一些不懂的地方,希望大家去看原文,也恳请给我留言,一起交流

有这么一个机器人小萝卜,可以沿着一维的路径运动,墙和这个一维路径是平行的,而且墙上开了几个门。

小萝卜装备了

  • 检测门的传感器(sensor)
  • 并且知道门在墙的那些位置
  • 但是在开始前并没有先验置信度。
    如下图a

那小萝卜怎么确定自己的位置呢?

一, 小萝卜可以使用sensor检测自己是不是在门前面,由于sensor噪声和环境噪声的原因,会有以下几种种情况:
为了看着舒服,先声明一下符号

truth 表示小萝卜在门前
report 表示传感器的检测结果
id: in font of door
nd: not in font of door

(1). Truth–id, Report–id
小萝卜有很大程度确定自己在门前,所以门对应位置的置信度会变得很高,如下图b:
(2).Truth–nd, Report–nd;

原文有四种情况,鉴于其他两种我不会特别理解,这里只提一下其他两种情况真实世界出现的可能性不大,但能部分解释为什么有一些不在门前的位置,概率不为0,我自己理解就是噪声问题,但原文在这两种情况的论述我觉得是有一些我不太能理解的。

二, 小萝卜运动的时候会降低自己对于自己位置确定程度,因为小萝卜要走5米,但实际可能走了4.95米。换句话说小萝卜不可能直接绝对的知道自己到底移动了多少。所以置信度就会出现紊乱。如下图c

三, 小萝卜在第二个门前面测量。根据第一中也就是图a的先验概率,我们和这次的观测值z结合在一起我们更新我们额达置信度,所以在第二个们的x出现了置信度的一个峰值。如图d
四, 小萝卜再次运动,置信度再次出现紊乱
这里写图片描述

参考:

  1. SLAM笔记三——贝叶斯滤波器
  2. udacity
  3. pdf摘要
  4. pdf摘要2
  5. 细说贝叶斯滤波
  6. 无人驾驶高精度定位技术-递归贝叶斯滤波
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值