一、检测背景
手机作为现代生活的重要工具,用户对手机屏幕的要求不断提高。若屏幕存在划痕、气泡、斑点、色彩不均和漏光等缺陷,用户在观看视频、浏览网页或查看图片时会感到不适,影响整体体验,因此高效、准确的缺陷检测显得尤为重要。
二、传统检测存在问题
- 人工检测:人工检测可以发现一些明显的缺陷,但效率低、主观性强,容易受到疲劳和环境因素的影响。
- 传统机器视觉:机器视觉系统在复杂环境下的适应性差,难以处理多样化的缺陷类型和复杂的背景。
三、AI检测的优势
AI模型能够通过一些标注数据进行训练,自动识别和分类不同类型的缺陷。这一过程不仅提高了检测的准确性和效率,还减少了人工干预的需求。
- 高精度检测: AI 算法能够通过深度学习识别细微的缺陷,检测的准确性达到 99+%,最小检测尺寸:3*3 像素。
- 处理时间快: AI 模型可以在短时间内分析大量图像,在 RXT4060 上检测速度可达 200张/秒。
- 多样性适应能力:AI模型能够适应不同类型的缺陷和不同的屏幕材质,具有较强的灵活性。
- 实时缺陷分类:将AI嵌入生产线,可以实时对每个屏幕的缺陷进行分类,迅速判断是否合格。
四、AI检测的方案
此手机屏幕外观缺陷检测方案基于深度视觉AI平台实现,深度视觉致力于深度学习,为个人和企业提供高效、精准、稳定的AI视觉解决方案。