
大学初识DL
文章平均质量分 65
DeepLearning
深海鱼肝油ya
在读盐焗生,北境第一深情,吉他爱好者。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Keras官方文档学习(常见问题)
几乎0基础直接看官方文档还是有点吃力的~ 我应该如何引用Keras? 如果它有助于您的研究,请在您的出版物中引用Keras。这是一个BibTeX条目示例: @misc{chollet2015keras, title={Keras}, author={Chollet, Fran\c{c}ois and others}, year={2015}, howpublished={\...原创 2019-10-28 11:35:57 · 982 阅读 · 0 评论 -
1*1卷积和谷歌Inception网络
1*1卷积 也称为network in network。 信道数量很大时,可以用1*1卷积压缩信道数量 也可以根据自己的意愿来压缩,保持或者增加信道数量 谷歌Inception网络 Inception网络或Inception层的作用就是代替人工确定卷积层中的过滤器类型,或者确定是否要创建卷积层或池化层。 瓶颈层即网络中最小的层。 下图计算每层的计算成本,以第一层(28*...原创 2019-10-21 18:35:54 · 959 阅读 · 0 评论 -
关于Keras的Conv2D的部分参数的理解
filters: 卷积核(就是过滤器!)的数目(即输出的维度) kernel_size: 单个整数或由两个整数构成的list/tuple,卷积核(过滤器)的宽度和长度。(kernel n.核心,要点,[计]内核) 如为单个整数,则表示在各个空间维度的相同长度。 strides: 单个整数或由两个整数构成的list/tuple,为卷积的步长。 如为单个整数,则表示在各个空间维度的相同步长。...原创 2019-10-19 12:00:51 · 8098 阅读 · 0 评论 -
CNN示例(识别手写体)
一个卷积神经网络包括卷积层,池化层和全连接层(fully connected layer) 在统计神经网络有多少层时,通常只统计具有权重和参数的层,因为池化层没有权重和参数,所以我们把一个Conv(卷积层)和一个POOL(池化层)共同作为一个卷积,两者组成神经网络Layer(层)的一部分。 当将下图的POOL2平整化为一个大小为400的一维向量时,再利用这400个单元构建下一层(含有12...原创 2019-10-17 13:14:25 · 3185 阅读 · 0 评论 -
池化层
缩减模型大小,提高计算速度,同时提高所提取特征的鲁棒性 最大化操作就是只要在任何一个象限内提取到某个特征,它都会保留在最大池化的输出里。(保留其最大值) Max pooling (最大池化)计算方法: 像卷积那样移动过滤器,不同的是每个区域不再相乘计算,而是取最大值作为输出层对应区域的值。 池化层并没有参数需要学习,但是有超级参数(HypeParameter):f和s(过滤器大...原创 2019-10-17 10:48:45 · 2757 阅读 · 0 评论 -
单层卷积网络
卷积得到图像矩阵之后再对矩阵加一个偏差,然后应用非线性激活激活函数(eg:relu),输出结果为矩阵 *输出图像中的通道数量=神经网络中这一层所使用的过滤器数量! 例如加了10个过滤器,输出结果结果的通道数就是10 而过滤器的通道数量=输入中通道的数量 权重也就是过滤器的集合,再乘以过滤器的总数量 损失数量L就是l层中过滤器的个数 偏差bias在代码中表示为1*1*1...原创 2019-10-16 18:13:10 · 932 阅读 · 0 评论 -
卷积运算原理
过滤器就是卷积核! 此处的卷积操作在数学中严格来说叫做互相关,即卷积前得先对过滤器进行双重镜操作,但在深度学习中双重镜操作不重要,所以默认这就是卷积。 二维图像的卷积: n:图像的尺寸 f:过滤器(f*f) 用来对图像进行卷积运算 p:padding(填充) 图像边缘利用率低,对图像进行填充(向外扩展),增加边缘信息利用率 s:步幅 过滤器在图像中行进的步长 用一个f...原创 2019-10-16 18:11:04 · 2426 阅读 · 0 评论