1.5:YOLOv8的模型蒸馏:学习小型模型以模仿大型模型的行为(课程共5200字,4段代码举例,带详细操作步骤)


代码例子1:加载并使用YOLOv8模型进行目标检测

代码例子2:基于YOLOv8模型的目标检测视频实时处理

代码例子3:使用模型蒸馏将大型模型的行为转移到小型模型

代码例子4:使用YOLOv8进行模型蒸馏

import cv2
from yolo import YOLOv8
from distillation import distill

# 加载大型模型
large_model = YOLOv8()

# 加载小型模型
small_model = YOLOv8()

# 读取图像
image = cv2.imread("image.jpg")

# 使用大型模型进行目标检测
large_boxes, large_classes, large_scores = large_model.detect(image)

# 使用模型蒸馏将大型模型的行为转移到小型模型
distill(small_model, large_model, image, large_boxes, large_classes, large_scores)

# 使用小型模型进行目标检测
small_boxes, small_classes, small_scores = small_model.detect(image)

# 打印检测结果
for box, cls, score in zip(small_boxes, small_classes, small_scores):
    print("Class:", cls, "Confidence:", score, "Box:", box)

课程前言:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小兔子平安

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值