YOLOv8推理速度优化课程
1. 课程前言
① 欢迎来到YOLOv8推理速度优化专题课程!在实时目标检测应用中,推理速度直接影响系统的响应能力和用户体验。本课程将深入探讨如何通过各种技术手段优化YOLOv8模型的推理性能,使其在保持高精度的同时实现更快的处理速度。
② YOLOv8作为当前最先进的实时目标检测算法,其设计本身就考虑了效率与精度的平衡。然而,在实际部署中,我们仍可以通过模型压缩、计算优化、硬件加速等多种技术进一步提升其推理速度。本课程将系统介绍这些优化方法的原理和实现。
③ 课程采用"理论+实践"的教学模式,包含四个精心设计的代码示例,涵盖从基础到高级的优化技术。您将学习到量化压缩、模型剪枝、TensorRT加速以及多线程处理等实用技术,每个示例都配有完整的实现代码和详细解释。
④ 无论您是需要在嵌入式设备部署模型,还是希望提升服务器端的处理吞吐量,本课程提供的优化方法都将帮助您实现目标。通过学习,您将掌握YOLOv8模型的全套加速技术,能够根据具体硬件环境选择最适合的优化方案。
2. 代码示例与解释
示例1:YOLOv8模型量化压缩