示例1:PyTorch框架下的YOLOv8训练与评估
示例2:TensorFlow框架下的YOLOv8模型转换与推理
示例3:ONNX Runtime框架下的YOLOv8优化与部署
示例4:OpenVINO框架下的YOLOv8高性能部署
YOLOv8的框架选择与评估实战课程前言
① 课程背景与目标:YOLOv8作为目标检测领域的前沿算法,在工业检测、自动驾驶、安防监控等场景具有广泛应用。本课程聚焦于YOLOv8在不同深度学习框架下的实现与评估,帮助学员掌握算法框架选择的核心逻辑,提升模型部署效率与性能。
② 核心内容与特色:课程深入对比PyTorch、TensorFlow、ONNX Runtime与OpenVINO四大框架,通过真实案例演示模型转换、量化优化与推理加速技巧。学员将掌握框架评估指标体系,学会根据硬件环境与业务需求选择最优部署方案。
③ 学习成果:完成课程后,学员能够独立完成YOLOv8在不同框架下的环境搭建、模型训练与推理部署;掌握模型性能评估方法,具备优化检测精度与速度的实战能力;理解框架适配原理,为复杂场景下的算法落地提供技术支撑。
④ 适用人群:本课程适合有一定深度学习基础,希望深入掌握目标检测技术的开发者;从事计算机视觉算法优化与部署的工程师;以及希望将YOLOv8应用于实际项目的科研人员。