这篇文章主要讲解一下机器学习中的几大评测指标
在读CTPN的论文时,遇到了Precision, Recall, F-measure三个概念
那么下面就简单从最开始的讲起
混淆矩阵
Postive | Negative | |
---|---|---|
True | True Positive(TP) | True Negative(TN) |
False | False Positive(FP) | False Negative(FN) |
TP: 正确识别为正样本
TN: 正确识别为负样本
FP: 错误识别为正样本
FN: 错误识别为负样本
助记:前者是否识别正确,后者是否本身为正
了解了混淆矩阵之后,来看看评测指标是如何定义的。
正确率Accuracy(可以看作所有样本识别正确的样本比例)
ACC=TP+TNTP+TN+FP+FN ACC=\frac{TP+TN}{TP+TN+FP+FN} ACC=TP+TN+FP