机器学习:准确率(Accuracy), 精确率(Precision), 召回率(Recall), F-measure

文章主要讲解机器学习中的评测指标。先介绍混淆矩阵,包括TP、TN、FP、FN的含义,接着阐述评测指标的定义,如正确率、精确率、召回率,还提到因Precision和Recall不能全面评测模型效果,引入了F - measure。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇文章主要讲解一下机器学习中的几大评测指标
在读CTPN的论文时,遇到了Precision, Recall, F-measure三个概念
那么下面就简单从最开始的讲起

混淆矩阵

Postive Negative
True True Positive(TP) True Negative(TN)
False False Positive(FP) False Negative(FN)

TP: 正确识别为正样本
TN: 正确识别为负样本
FP: 错误识别为正样本
FN: 错误识别为负样本

助记:前者是否识别正确,后者是否本身为正

了解了混淆矩阵之后,来看看评测指标是如何定义的。

正确率Accuracy(可以看作所有样本识别正确的样本比例)
ACC=TP+TNTP+TN+FP+FN ACC=\frac{TP+TN}{TP+TN+FP+FN} ACC=TP+TN+FP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值