CVPR 2019 -目标检测 - GA-RPN《Region Proposal by Guided Anchoring》理解

本文介绍了一种名为GA-RPN的新方法,它通过语义特征指导锚生成,优化了目标检测过程。该方法能根据目标的位置预测不同尺寸和长宽比的锚,有效减少了背景区域的锚数量,提高了检测速度和召回率。实验结果显示,在MSCOCO2019数据集上,使用GA-RPN的FasterRCNN等模型的mAP有显著提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  (一段废话)最近在学习经典目标检测算法Faster RCNN,个人觉得应该同时读一些文章,这样有助于更好地理解原算法,同时又学习了新算法。CVPR2019的一些工作还是挺有意思的,我将就《Region Proposal by Guided Anchoring》谈一些个人理解。如有不正之处,还请大家批评指出。文章下载地址为http://openaccess.thecvf.com/content_CVPR_2019/papers/Wang_Region_Proposal_by_Guided_Anchoring_CVPR_2019_paper.pdf

一、本文提出了一种能够根据语义特征引导锚生成的方法,能够同时预测目标的位置以及不同位置处锚的尺寸和长宽比。

1.数据集:
MS COCO 2019
2.评价指标:
召回率(recall)
结果:该方法所用的achor是RPN的90%,使用该方法的Fast RCNN、Faster RCNN、RetinaNet其mAP分别提升了2.2%、2.7%、1.2%。

二、思路(减少achor生成的数量,根据特征图的不同位置生成不同大小的achor)

1.存在的问题:
以Faster RCNN为例,其achor的选取遵循以下原则:
(还未理解透彻)
其缺点在于:
①固定尺度的achor会影响检测器的速度和召回率;
②大量的achor都是在背景区域,计算量过大。
2.启发:
目标在图像上并不是均匀分布的,目标的尺度与图像的内容,位置和几何场景有关。
3.解决方法:
首先确定可能包含目标的子区域,然后根据不同的位置确定不同的形状的achor。

三、GA-RPN

在这里插入图片描述
思路:
1.achor位置预测

在这里插入图片描述
2.achor形状预测

3.Feature Adaptation

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值