两个总体比例相等的假设
z=p1−p2p(1−p)(1n1+1n2)z = \frac{p_1 - p_2}{\sqrt{p(1-p)(\frac{1}{n_1}+\frac{1}{n_2})}}z=p(1−p)(n11+n21)p1−p2
例:
人们普遍认为麦当劳的主要消费群体试青少年,但对时长进一步细分却发现有不同的看法。一种观点认为小学生更喜欢麦当劳,另一种观点认为中学生对麦当劳的喜爱程度不亚于小学生。某市场调查公司对此在某地区进行了一项调查,随机抽取了100名小学生和100名中学生,调查的问题是:如果有麦当劳和其他中式快餐(如兰州拉面),你会首选那种作为经常性午餐?调查结果如下:小学生(样本1)100人中有76人把麦当劳作为首选的经常性午餐,中学生(样本2)100人中有69人作出同样的选择。调查结果支持哪种观点?
假设:
H0:π1−π2=0H_0:\pi_1-\pi_2=0H0:π1−π2=0
H0:π1−π2≠0H_0:\pi_1-\pi_2 \neq 0H0:π1−π2=0
双侧检验
# 一般取 a = 0.05
a = 0.05
p1 = 76/100
p2 = 69/100
n1 = 100
n2 = 100
p = (76+69)/(n1+n2)
计算za/2z_{a/2}za/2
z_a2 = stats.norm.isf(a/2)
z_a2
1.9599639845400545
计算统计量z
z = (p1-p2)/np.sqrt(p*(1-p)*(1/n1+1/n2))
z
1.1085306154508552
依据统计量z决策
if abs(z)<abs(z_a2):
print('不能拒绝H0,差异不显著')
if abs(z)>abs(z_a2):
print('拒绝H0,接受H1')
不能拒绝H0,差异不显著
计算p值
p_value = stats.norm.sf(z)*2
p_value
0.267632724691081
依据p值决策
if p_value > a :
print('不能拒绝H0,差异不显著')
if p_value < a :
print('拒绝H0,接受H1')
不能拒绝H0,差异不显著
两个总体比例之差不为零的假设
z=(p1−p2)−(π1−π2)p1(1−p1)n1+p2(1−p2)n2z = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\sqrt{\frac{p_1(1-p_1)}{n_1}+\frac{p_2(1-p_2)}{n_2}}}z=n1p1(1−p1)+n2p2(1−p2)(p1−p2)−(π1−π2)
例:
有一项研究报告说青少年经常上网聊天,男生的比例至少超过女生10各百分点,即π1−π2≥10%(π1为男生比例,π2为女生比例)\pi_1-\pi_2\geq10\% (\pi_1 为男生比例,\pi_2为女生比例)π1−π2≥10%(π1为男生比例,π2为女生比例)。现对150个男生和150个女生进行上网聊天的频度调查,其中经常聊天的男生有68人,经常聊天的女生有54人。调查结果是否支持研究报告的结论(a=0.05)
假设:
H0:π1−π2≥10%H_0:\pi_1-\pi_2 \geq 10\%H0:π1−π2≥10%
H0:π1−π2<10%H_0:\pi_1-\pi_2 < 10\%H0:π1−π2<10%
单侧检验
# 由题可知
n1 = 150
n2 = 150
p1 = 68/150
p2 = 54/150
# d = pi_1 - pi_2
d = 0.1
a = 0.05
计算zaz_{a}za
z_a = stats.norm.isf(a)
z_a
1.6448536269514729
计算统计量z
z = ((p1-p2)-d)/np.sqrt(p1*(1-p1)/n1+p2*(1-p2)/n2)
z
-0.11806998113871585
依据统计量z决策
if abs(z)<abs(z_a):
print('不能拒绝H0,差异不显著')
if abs(z)>abs(z_a):
print('拒绝H0,接受H1')
不能拒绝H0,差异不显著
计算p值
p_value = stats.norm.sf(abs(z))
p_value
0.45300610431420485
依据p值决策
if p_value > a :
print('不能拒绝H0,差异不显著')
if p_value < a :
print('拒绝H0,接受H1')
不能拒绝H0,差异不显著