一、决策树
1.1 介绍:类似于分支结构
1.2 信息熵:H = -(p1logp1 + p2logp2 + ... + p32log32)
公式: 单位是比特
1.2.1 划分依据
(1)信息增益
特征A对训练数据集D的信息增益g(D,A),定义为集合D的信息熵H(D)与特征A给定条件下D的信息条件熵H(D|A)之差,即公式为:
注:信息增益表示得知特征X的信息而使得类Y的信息的不确定性减少的程度
1.2.2 信息增益的计算
信息熵的计算:
![]()
条件熵的计算:
注:C_k表示属于某个类别的样本数,
1.3 常见决策树使用的算法
ID3: 信息增益 最大的准则
C4.5: 信息增益比 最大的准则
CART 回归树: 平方误差 最小 分类树: 基尼系数 最小的准则 在sklearn中可以选择划分的原则
1.4 决策树API
class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None,random_state=None)
决策树分类器
criterion:默认是’gini’系数,也可以选择信息增益的熵’entropy’
max_depth:树的深度大小
random_state:随机数种子
method: decision_path:返回决策树的路径
Q:泰坦尼克号乘客生存分类模型
from sklearn.model_selection import train_test_split
import pandas as pd
from sklearn.feature_extraction import DictVectorizer
from sklearn.tree import DecisionTreeClassifier, export_graphviz
def decision():
"""
决策树对泰坦尼克号进行预测生死
:return: None
"""
# 获取数据
titan = pd.read_csv("./train.csv")
print(titan.head())
print(titan.info())
# 处理数据,找出特征值
x = titan[['Pclass', 'Age', 'Sex']]
y = titan['Survived']
# 缺失值处理
x['Age'].fillna(x['Age'].mean(), inplace=True)
print(titan.info())
# 分隔数据到训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
# 进行处理(特征工程)特征-》类别-》one_hot编码
dict = DictVectorizer(sparse=False)
x_train = dict.fit_transform(x_train.to_dict(orient="records"))
x_test = dict.transform(x_test.to_dict(orient="records"))
# 用决策树预测
dec = DecisionTreeClassifier(max_depth=5)
dec.fit(x_train, y_train)
print(x_train)
# 预测的准确率
print(dec.score(x_test, y_test))
# 导出决策树的结构
export_graphviz(dec, out_file='./tree.dot',
feature_names=['年龄', 'pclass=1st', '女性', '男性'])
if __name__ == '__main__':
decision()
1.5 决策树的结构、本地保存API
1、sklearn.tree.export_graphviz() 该函数能够导出DOT格式 tree.export_graphviz(estimator,out_file='tree.dot’,feature_names=[‘’,’’])
2、工具:(能够将dot文件转换为pdf、png) 安装graphviz
ubuntu:sudo apt-get install graphviz Mac:brew install graphviz
3、运行命令 然后我们运行这个命令 $ dot -Tpng tree.dot -o tree.png
保存的决策树
1.6 决策树的优缺点
优点: (1)简单的理解和解释,树木可视化。
(2)需要很少的数据准备,其他技术通常需要数据归一化
缺点: (1)决策树学习者可以创建不能很好地推广数据的过于复杂的树,这被称为过拟合。
(2)决策树可能不稳定,因为数据的小变化可能会导致完全不同的树 被生成
改进: (1)减枝cart算法
(2)随机森林
二、随机森林
2.1 理解:多棵决策树交叉判优
2.2 定义:在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。
2.3 API
class sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=’gini’, max_depth=None, bootstrap=True, random_state=None)
随机森林分类器
n_estimators:integer,optional(default = 10) 森林里的树木数量
criteria:string,可选(default =“gini”)分割特征的测量方法
max_depth:integer或None,可选(默认=无)树的最大深度
bootstrap:boolean,optional(default = True)是否在构建树时使用放回抽样
Q:实验
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.feature_extraction import DictVectorizer
from sklearn.ensemble import RandomForestClassifier
import pandas as pd
def tree():
"""
随机森林检测
:return: None
"""
# 获取数据
titan = pd.read_csv("./train.csv")
# 处理数据,找出特征值
x = titan[['Pclass', 'Age', 'Sex']]
y = titan['Survived']
# 缺失值处理
x['Age'].fillna(x['Age'].mean(), inplace=True)
# 分隔数据到训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
# 进行处理(特征工程)特征-》类别-》one_hot编码
dict = DictVectorizer(sparse=False)
x_train = dict.fit_transform(x_train.to_dict(orient="records"))
x_test = dict.transform(x_test.to_dict(orient="records"))
# 随机森林进行预测(超参数调优)
rf = RandomForestClassifier()
# 网格搜索与交叉验证
param = {"n_estimators": [100, 200, 300, 500, 800, 1200], "max_depth": [5, 8, 15, 25, 30]}
gc = GridSearchCV(rf, param_grid=param, cv=2)
gc.fit(x_train, y_train)
print("准确率:", gc.score(x_test, y_test))
print("最佳模型:", gc.best_params_)
if __name__ == '__main__':
tree()
优点:
在当前所有算法中,具有极好的准确率
能够有效地运行在大数据集上
能够处理具有高维特征的输入样本,而且不需要降维
能够评估各个特征在分类问题上的重要性
对于缺省值问题也能够获得很好得结果