决策树和随机森林

一、决策树

        1.1 介绍:类似于分支结构

        1.2 信息熵:H = -(p1logp1 + p2logp2 + ... + p32log32)

              公式: 单位是比特

             

         1.2.1 划分依据

                (1)信息增益

        特征A对训练数据集D的信息增益g(D,A),定义为集合D的信息熵H(D)与特征A给定条件下D的信息条件熵H(D|A)之差,即公式为:

        注:信息增益表示得知特征X的信息而使得类Y的信息的不确定性减少的程度 

        1.2.2 信息增益的计算  

信息熵的计算:

         

 条件熵的计算:

注:C_k表示属于某个类别的样本数, 

        1.3 常见决策树使用的算法

ID3: 信息增益 最大的准则 

C4.5: 信息增益比 最大的准则

CART 回归树: 平方误差 最小 分类树: 基尼系数   最小的准则 在sklearn中可以选择划分的原则

        1.4 决策树API

class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None,random_state=None)

决策树分类器

criterion:默认是’gini’系数,也可以选择信息增益的熵’entropy’

max_depth:树的深度大小

random_state:随机数种子

method: decision_path:返回决策树的路径 

Q:泰坦尼克号乘客生存分类模型 

        

from sklearn.model_selection import train_test_split
import pandas as pd
from sklearn.feature_extraction import DictVectorizer
from sklearn.tree import DecisionTreeClassifier, export_graphviz


def decision():
    """
    决策树对泰坦尼克号进行预测生死
    :return: None
    """
    # 获取数据
    titan = pd.read_csv("./train.csv")
    print(titan.head())
    print(titan.info())
    # 处理数据,找出特征值
    x = titan[['Pclass', 'Age', 'Sex']]
    y = titan['Survived']

    # 缺失值处理
    x['Age'].fillna(x['Age'].mean(), inplace=True)
    print(titan.info())
    # 分隔数据到训练集和测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)

    # 进行处理(特征工程)特征-》类别-》one_hot编码
    dict = DictVectorizer(sparse=False)

    x_train = dict.fit_transform(x_train.to_dict(orient="records"))

    x_test = dict.transform(x_test.to_dict(orient="records"))

    # 用决策树预测
    dec = DecisionTreeClassifier(max_depth=5)

    dec.fit(x_train, y_train)
    print(x_train)
    # 预测的准确率
    print(dec.score(x_test, y_test))
    # 导出决策树的结构
    export_graphviz(dec, out_file='./tree.dot',
                    feature_names=['年龄', 'pclass=1st', '女性', '男性'])


if __name__ == '__main__':
    decision()

         1.5 决策树的结构、本地保存API

1、sklearn.tree.export_graphviz() 该函数能够导出DOT格式 tree.export_graphviz(estimator,out_file='tree.dot’,feature_names=[‘’,’’])

2、工具:(能够将dot文件转换为pdf、png) 安装graphviz

ubuntu:sudo apt-get install graphviz       Mac:brew install graphviz

3、运行命令 然后我们运行这个命令 $ dot -Tpng tree.dot -o tree.png

保存的决策树

 

 1.6 决策树的优缺点

优点:      (1)简单的理解和解释,树木可视化。

                 (2)需要很少的数据准备,其他技术通常需要数据归一化

缺点:        (1)决策树学习者可以创建不能很好地推广数据的过于复杂的树,这被称为过拟合。

                   (2)决策树可能不稳定,因为数据的小变化可能会导致完全不同的树 被生成

改进:       (1)减枝cart算法

                  (2)随机森林

二、随机森林

        2.1 理解:多棵决策树交叉判优

        2.2 定义:在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。

        2.3 API

class sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=’gini’, max_depth=None, bootstrap=True, random_state=None)

随机森林分类器

n_estimators:integer,optional(default = 10) 森林里的树木数量

criteria:string,可选(default =“gini”)分割特征的测量方法

max_depth:integer或None,可选(默认=无)树的最大深度

bootstrap:boolean,optional(default = True)是否在构建树时使用放回抽样

Q:实验 

from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.feature_extraction import DictVectorizer
from sklearn.ensemble import RandomForestClassifier
import pandas as pd


def tree():
    """
    随机森林检测
    :return: None
    """
    # 获取数据
    titan = pd.read_csv("./train.csv")
    # 处理数据,找出特征值
    x = titan[['Pclass', 'Age', 'Sex']]
    y = titan['Survived']

    # 缺失值处理
    x['Age'].fillna(x['Age'].mean(), inplace=True)
    # 分隔数据到训练集和测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)

    # 进行处理(特征工程)特征-》类别-》one_hot编码
    dict = DictVectorizer(sparse=False)

    x_train = dict.fit_transform(x_train.to_dict(orient="records"))

    x_test = dict.transform(x_test.to_dict(orient="records"))
    # 随机森林进行预测(超参数调优)
    rf = RandomForestClassifier()

    # 网格搜索与交叉验证
    param = {"n_estimators": [100, 200, 300, 500, 800, 1200], "max_depth": [5, 8, 15, 25, 30]}
    gc = GridSearchCV(rf, param_grid=param, cv=2)
    gc.fit(x_train, y_train)
    print("准确率:", gc.score(x_test, y_test))
    print("最佳模型:", gc.best_params_)


if __name__ == '__main__':
    tree()

优点:

在当前所有算法中,具有极好的准确率

能够有效地运行在大数据集上

能够处理具有高维特征的输入样本,而且不需要降维

能够评估各个特征在分类问题上的重要性

对于缺省值问题也能够获得很好得结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值