一、DMSP/OLS、NPP/VIIRS等夜间灯光数据能源碳排放空间化理论介绍

本文介绍了利用DMSP/OLS、NPP/VIIRS等夜间灯光数据进行能源碳排放空间化的方法。首先,强调了选择合适研究区域的重要性,通常选择工业发达的城市群。接着详细阐述了具体步骤,包括建立渔网、提取DN值、计算灯光指数、模型拟合及反演结果校正。最后提到,能源碳排放的城市类型判断和其他分析与GDP空间化有所不同,并预告将在后续内容中详细介绍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

利用DMSP/OLS、NPP/VIIRS等夜间灯光数据开展能源碳排放空间化之前,需要区分与利用夜间灯光数据GDP空间化,两者操作流程并无较大区别,只是GDP空间化选择夜间灯光指数种类有比较多包括总灯光指数、平均灯光指数、综合灯光指数等,但是能源碳排放过程中通常只选择总灯光指数,其次能源碳排放空间化可能对于某些省份工业相对没有那么发达的区域,构建模型时候拟合效果比较差,也就是R方低一些或者显著性差。针对上述拟合度低的情况诸多学者前辈从多个方面开展研究进行提升。具体措施如下:

(1)通常对于研究区域的选择会以大范围的城市群、经济区或者典型的省市,也就是本身工业相对发达,且代表性很强的城市。所以一般研究能源碳排放之前,一定要考虑研究区域,不然有一些同志研究到一半突然发现好像并不具有代表性,不适用研究能源碳排放。(建议研究区域选择以城市群例如:成渝、粤港澳、京津冀等)

(2)为提升模型构建的R方,同时也为了更加准确监测地级市能源碳排放的DMSP/OLS、NPP/VIIRS夜间灯光数据定量测算方法,通常研究方法是利用建设用地边界切割DMSP/OLS、NPP/VIIRS等夜间灯光数据,获取研究区建设用地范围内的夜间灯光总值,与相应的能源碳排放统计值进行拟合分析,构建能源碳排放的模型,实现能源碳排放的空间化,然后基于能源碳排放数据空间化结果进行相关分析,包括能源碳排放类型城市判定、空间相关指数全局Moran指数分析、能源碳排放空间聚集程度、能源碳排放影响机理分析、提出因地制宜的碳减排策略。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

端木宛白的GIS课堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值