一、前言
利用DMSP/OLS、NPP/VIIRS等夜间灯光数据开展能源碳排放空间化之前,需要区分与利用夜间灯光数据GDP空间化,两者操作流程并无较大区别,只是GDP空间化选择夜间灯光指数种类有比较多包括总灯光指数、平均灯光指数、综合灯光指数等,但是能源碳排放过程中通常只选择总灯光指数,其次能源碳排放空间化可能对于某些省份工业相对没有那么发达的区域,构建模型时候拟合效果比较差,也就是R方低一些或者显著性差。针对上述拟合度低的情况诸多学者前辈从多个方面开展研究进行提升。具体措施如下:
(1)通常对于研究区域的选择会以大范围的城市群、经济区或者典型的省市,也就是本身工业相对发达,且代表性很强的城市。所以一般研究能源碳排放之前,一定要考虑研究区域,不然有一些同志研究到一半突然发现好像并不具有代表性,不适用研究能源碳排放。(建议研究区域选择以城市群例如:成渝、粤港澳、京津冀等)
(2)为提升模型构建的R方,同时也为了更加准确监测地级市能源碳排放的DMSP/OLS、NPP/VIIRS夜间灯光数据定量测算方法,通常研究方法是利用建设用地边界切割DMSP/OLS、NPP/VIIRS等夜间灯光数据,获取研究区建设用地范围内的夜间灯光总值,与相应的能源碳排放统计值进行拟合分析,构建能源碳排放的模型,实现能源碳排放的空间化,然后基于能源碳排放数据空间化结果进行相关分析,包括能源碳排放类型城市判定、空间相关指数全局Moran指数分析、能源碳排放空间聚集程度、能源碳排放影响机理分析、提出因地制宜的碳减排策略。